These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34755876)

  • 1. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors.
    Fakhoury JN; Zhang Y; Edmonds KA; Bringas M; Luebke JL; Gonzalez-Gutierrez G; Capdevila DA; Giedroc DP
    Nucleic Acids Res; 2021 Dec; 49(21):12556-12576. PubMed ID: 34755876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus.
    Luebke JL; Shen J; Bruce KE; Kehl-Fie TE; Peng H; Skaar EP; Giedroc DP
    Mol Microbiol; 2014 Dec; 94(6):1343-60. PubMed ID: 25318663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in Enterococcus faecalis.
    Shen J; Walsh BJC; Flores-Mireles AL; Peng H; Zhang Y; Zhang Y; Trinidad JC; Hultgren SJ; Giedroc DP
    ACS Chem Biol; 2018 Jun; 13(6):1610-1620. PubMed ID: 29712426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR).
    Chang FM; Martin JE; Giedroc DP
    Biochemistry; 2015 Apr; 54(15):2463-72. PubMed ID: 25798654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR).
    Chang FM; Coyne HJ; Cubillas C; Vinuesa P; Fang X; Ma Z; Ma D; Helmann JD; García-de los Santos A; Wang YX; Dann CE; Giedroc DP
    J Biol Chem; 2014 Jul; 289(27):19204-17. PubMed ID: 24831014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.
    Grossoehme N; Kehl-Fie TE; Ma Z; Adams KW; Cowart DM; Scott RA; Skaar EP; Giedroc DP
    J Biol Chem; 2011 Apr; 286(15):13522-31. PubMed ID: 21339296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus.
    Luebke JL; Arnold RJ; Giedroc DP
    Metallomics; 2013 Apr; 5(4):335-42. PubMed ID: 23385876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis.
    Ma Z; Cowart DM; Scott RA; Giedroc DP
    Biochemistry; 2009 Apr; 48(15):3325-34. PubMed ID: 19249860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Agari K; Kuramitsu S; Shinkai A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):1993-2005. PubMed ID: 20395270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for persulfide-sensing specificity in a transcriptional regulator.
    Capdevila DA; Walsh BJC; Zhang Y; Dietrich C; Gonzalez-Gutierrez G; Giedroc DP
    Nat Chem Biol; 2021 Jan; 17(1):65-70. PubMed ID: 33106663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Insights into the Copper-Sensitive Operon Repressor in Acidithiobacillus caldus.
    Hou S; Tong Y; Yang H; Feng S
    Appl Environ Microbiol; 2021 Jul; 87(16):e0066021. PubMed ID: 34085855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR).
    Dwarakanath S; Chaplin AK; Hough MA; Rigali S; Vijgenboom E; Worrall JAR
    J Biol Chem; 2012 May; 287(21):17833-17847. PubMed ID: 22451651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational analysis and chemical reactivity of the multidomain sulfurtransferase, Staphylococcus aureus CstA.
    Higgins KA; Peng H; Luebke JL; Chang FM; Giedroc DP
    Biochemistry; 2015 Apr; 54(14):2385-98. PubMed ID: 25793461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes.
    Corbett D; Schuler S; Glenn S; Andrew PW; Cavet JS; Roberts IS
    Mol Microbiol; 2011 Jul; 81(2):457-72. PubMed ID: 21564342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator.
    Liu T; Ramesh A; Ma Z; Ward SK; Zhang L; George GN; Talaat AM; Sacchettini JC; Giedroc DP
    Nat Chem Biol; 2007 Jan; 3(1):60-8. PubMed ID: 17143269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans.
    Tan BG; Vijgenboom E; Worrall JA
    Nucleic Acids Res; 2014 Jan; 42(2):1326-40. PubMed ID: 24121681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copper-Sensitive Operon Repressor (CsoR): Impact on Structure and Stability.
    Jacobs AD; Chang FM; Morrison L; Dilger JM; Wysocki VH; Clemmer DE; Giedroc DP
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12795-9. PubMed ID: 26332992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for using organic persulfides to measure the chemical reactivity of persulfide sensors.
    Fakhoury JN; Capdevila DA; Giedroc DP
    STAR Protoc; 2022 Jun; 3(2):101424. PubMed ID: 35634358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance.
    Liang J; Zhang M; Lu M; Li Z; Shen X; Chou M; Wei G
    Sci Rep; 2016 Oct; 6():35155. PubMed ID: 27725778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CsoR family transcriptional regulator, TTHA1953, controls the sulfur oxidation pathway in Thermus thermophilus HB8.
    Barrows JK; Van Dyke MW
    J Biol Chem; 2023 Jun; 299(6):104759. PubMed ID: 37116710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.