BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34756221)

  • 1. Exploiting complex medical data with interpretable deep learning for adverse drug event prediction.
    Rebane J; Samsten I; Papapetrou P
    Artif Intell Med; 2020 Sep; 109():101942. PubMed ID: 34756221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach.
    Li R; Yin C; Yang S; Qian B; Zhang P
    J Med Internet Res; 2020 Sep; 22(9):e20645. PubMed ID: 32985996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records.
    Bagattini F; Karlsson I; Rebane J; Papapetrou P
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):7. PubMed ID: 30630486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable time-aware and co-occurrence-aware network for medical prediction.
    Sun C; Dui H; Li H
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):305. PubMed ID: 34727940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
    Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H
    J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review.
    Yasrebi-de Kom IAR; Dongelmans DA; de Keizer NF; Jager KJ; Schut MC; Abu-Hanna A; Klopotowska JE
    J Am Med Inform Assoc; 2023 Apr; 30(5):978-988. PubMed ID: 36805926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adverse Event Signal Detection Using Patients' Concerns in Pharmaceutical Care Records: Evaluation of Deep Learning Models.
    Nishioka S; Watabe S; Yanagisawa Y; Sayama K; Kizaki H; Imai S; Someya M; Taniguchi R; Yada S; Aramaki E; Hori S
    J Med Internet Res; 2024 Apr; 26():e55794. PubMed ID: 38625718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for healthcare: review, opportunities and challenges.
    Miotto R; Wang F; Wang S; Jiang X; Dudley JT
    Brief Bioinform; 2018 Nov; 19(6):1236-1246. PubMed ID: 28481991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adverse Drug Events Detection in Clinical Notes by Jointly Modeling Entities and Relations Using Neural Networks.
    Dandala B; Joopudi V; Devarakonda M
    Drug Saf; 2019 Jan; 42(1):135-146. PubMed ID: 30649738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning.
    Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y
    J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of single-domain and multidomain medication and adverse drug event relation extraction from electronic health record notes using advanced deep learning models.
    Li F; Yu H
    J Am Med Inform Assoc; 2019 Jul; 26(7):646-654. PubMed ID: 30938761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The class imbalance problem detecting adverse drug reactions in electronic health records.
    Santiso S; Casillas A; Pérez A
    Health Informatics J; 2019 Dec; 25(4):1768-1778. PubMed ID: 30230408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods.
    Christopoulou F; Tran TT; Sahu SK; Miwa M; Ananiadou S
    J Am Med Inform Assoc; 2020 Jan; 27(1):39-46. PubMed ID: 31390003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-stage deep learning approach for extracting entities and relationships from medical texts.
    Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P
    J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An interpretable deep learning model for time-series electronic health records: Case study of delirium prediction in critical care.
    Sheikhalishahi S; Bhattacharyya A; Celi LA; Osmani V
    Artif Intell Med; 2023 Oct; 144():102659. PubMed ID: 37783541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From adverse drug event detection to prevention. A novel clinical decision support framework for medication safety.
    Koutkias VG; McNair P; Kilintzis V; Skovhus Andersen K; Niès J; Sarfati JC; Ammenwerth E; Chazard E; Jensen S; Beuscart R; Maglaveras N
    Methods Inf Med; 2014; 53(6):482-92. PubMed ID: 25377477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU.
    Caicedo-Torres W; Gutierrez J
    J Biomed Inform; 2019 Oct; 98():103269. PubMed ID: 31430550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.