These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34756307)
1. Ensemble deep learning with multi-objective optimization for prognosis of rotating machinery. Ma M; Sun C; Mao Z; Chen X ISA Trans; 2020 Oct; ():. PubMed ID: 34756307 [TBL] [Abstract][Full Text] [Related]
2. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes. Wang D; Xian X; Song C IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999 [TBL] [Abstract][Full Text] [Related]
3. A new ensemble residual convolutional neural network for remaining useful life estimation. Wen L; Dong Y; Gao L Math Biosci Eng; 2019 Jan; 16(2):862-880. PubMed ID: 30861669 [TBL] [Abstract][Full Text] [Related]
4. Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics. Zhang C; Lim P; Qin AK; Tan KC IEEE Trans Neural Netw Learn Syst; 2017 Oct; 28(10):2306-2318. PubMed ID: 27416606 [TBL] [Abstract][Full Text] [Related]
5. A data-driven prognostics method for explicit health index assessment and improved remaining useful life prediction of bearings. Bilendo F; Badihi H; Lu N; Jiang B ISA Trans; 2021 May; ():. PubMed ID: 33985788 [TBL] [Abstract][Full Text] [Related]
6. Joint optimization of degradation assessment and remaining useful life prediction for bearings with temporal convolutional auto-encoder. Ding Y; Jia M; Zhao X; Yan X; Lee CG ISA Trans; 2024 Mar; 146():451-462. PubMed ID: 38320915 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings. Kamat PV; Sugandhi R; Kumar S PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464 [TBL] [Abstract][Full Text] [Related]
8. A method for predicting remaining useful life using enhanced Savitzky-Golay filter and improved deep learning framework. Li X; Wang L; Wang C; Ma X; Miao B; Xu D; Cheng R Sci Rep; 2024 Oct; 14(1):23983. PubMed ID: 39402125 [TBL] [Abstract][Full Text] [Related]
9. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. Yan M; Wang X; Wang B; Chang M; Muhammad I ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470 [TBL] [Abstract][Full Text] [Related]
10. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine. Hu K; Cheng Y; Wu J; Zhu H; Shao X IEEE Trans Cybern; 2023 Apr; 53(4):2531-2543. PubMed ID: 34822334 [TBL] [Abstract][Full Text] [Related]
11. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning. Wang Y; Li Y; Lu H; Wang D Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188 [TBL] [Abstract][Full Text] [Related]
12. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction. Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301 [TBL] [Abstract][Full Text] [Related]
13. A remaining useful life prediction method based on PSR-former. Zhang H; Zhang S; Qiu L; Zhang Y; Wang Y; Wang Z; Yang G Sci Rep; 2022 Oct; 12(1):17887. PubMed ID: 36284229 [TBL] [Abstract][Full Text] [Related]
14. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme. Hou G; Xu S; Zhou N; Yang L; Fu Q Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032 [TBL] [Abstract][Full Text] [Related]
15. Shapelet selection based on a genetic algorithm for remaining useful life prediction with supervised learning. Ahn G; Jin MK; Hwang SB; Hur S Heliyon; 2022 Dec; 8(12):e12111. PubMed ID: 36578413 [TBL] [Abstract][Full Text] [Related]
16. Remaining Useful Life Prediction Based on Deep Learning: A Survey. Wu F; Wu Q; Tan Y; Xu X Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894245 [TBL] [Abstract][Full Text] [Related]
17. Transient waveform matching based on ascending multi-wavelets for diagnostics and prognostics of bearing deterioration. Jiang K; Li Z; Zhou Y; Sarkodie-Gyan T; Li W ISA Trans; 2022 Jan; 120():330-341. PubMed ID: 33766452 [TBL] [Abstract][Full Text] [Related]
18. A similarity based methodology for machine prognostics by using kernel two sample test. Cai H; Jia X; Feng J; Li W; Pahren L; Lee J ISA Trans; 2020 Aug; 103():112-121. PubMed ID: 32171595 [TBL] [Abstract][Full Text] [Related]
19. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
20. Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning. Li X; Zhang W; Ma H; Luo Z; Li X IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5480-5491. PubMed ID: 33852404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]