These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 34756340)
1. Influence of the PFNA screw position on the risk of cut-out in an unstable intertrochanteric fracture: a computational analysis. Quental C; Vasconcelos S; Folgado J; Guerra-Pinto F Med Eng Phys; 2021 Nov; 97():70-76. PubMed ID: 34756340 [TBL] [Abstract][Full Text] [Related]
2. A mathematical simulation of the tip-apex distance and the calcar-referenced tip-apex distance for intertrochanteric fractures reduced with lag screws. Li S; Chang SM; Jin YM; Zhang YQ; Niu WX; Du SC; Zhang LZ; Ma H Injury; 2016 Jun; 47(6):1302-8. PubMed ID: 27087281 [TBL] [Abstract][Full Text] [Related]
3. Impact of tip-apex distance and femoral head lag screw position on treatment outcomes of unstable intertrochanteric fractures using cephalomedullary nails. Lee CH; Su KC; Chen KH; Pan CC; Wu YC J Int Med Res; 2018 Jun; 46(6):2128-2140. PubMed ID: 29848122 [TBL] [Abstract][Full Text] [Related]
4. Should the tip-apex distance (TAD) rule be modified for the proximal femoral nail antirotation (PFNA)? A retrospective study. Nikoloski AN; Osbrough AL; Yates PJ J Orthop Surg Res; 2013 Oct; 8():35. PubMed ID: 24135331 [TBL] [Abstract][Full Text] [Related]
5. New tip-apex distance and calcar-referenced tip-apex distance cut-offs may be the best predictors for cut-out risk after intramedullary fixation of proximal femur fractures. Caruso G; Corradi N; Caldaria A; Bottin D; Lo Re D; Lorusso V; Morotti C; Valpiani G; Massari L Sci Rep; 2022 Jan; 12(1):357. PubMed ID: 35013492 [TBL] [Abstract][Full Text] [Related]
6. Does Computer-assisted Surgery Improve Lag Screw Placement During Cephalomedullary Nailing of Intertrochanteric Hip Fractures? Kuhl M; Beimel C Clin Orthop Relat Res; 2020 Sep; 478(9):2132-2144. PubMed ID: 32496321 [TBL] [Abstract][Full Text] [Related]
7. Risk factors for cut-out of double lag screw fixation in proximal femoral fractures. Buyukdogan K; Caglar O; Isik S; Tokgozoglu M; Atilla B Injury; 2017 Feb; 48(2):414-418. PubMed ID: 27889112 [TBL] [Abstract][Full Text] [Related]
8. Predictors of failure following fixation of intertrochanteric fractures with proximal femoral nail antirotation. Raghuraman R; Kam JW; Chua DTC Singapore Med J; 2019 Sep; 60(9):463-467. PubMed ID: 31570952 [TBL] [Abstract][Full Text] [Related]
9. Intertrochanteric fracture: Association between the coronal position of the lag screw and stress distribution. Liang C; Peng R; Jiang N; Xie G; Wang L; Yu B Asian J Surg; 2018 May; 41(3):241-249. PubMed ID: 28366494 [TBL] [Abstract][Full Text] [Related]
10. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Kashigar A; Vincent A; Gunton MJ; Backstein D; Safir O; Kuzyk PR Bone Joint J; 2014 Aug; 96-B(8):1029-34. PubMed ID: 25086117 [TBL] [Abstract][Full Text] [Related]
11. Prospective randomized study comparing two cephalomedullary nails for elderly intertrochanteric fractures: Zimmer natural nail versus proximal femoral nail antirotation II. Shin YS; Chae JE; Kang TW; Han SB Injury; 2017 Jul; 48(7):1550-1557. PubMed ID: 28433451 [TBL] [Abstract][Full Text] [Related]
12. Optimizing fixation methods for stable and unstable intertrochanteric hip fractures treated with sliding hip screw or cephalomedullary nailing: A comparative biomechanical and finite element analysis study. Kyriakopoulos G; Panagopoulos A; Pasiou E; Kourkoulis SK; Diamantakos I; Anastopoulos G; Tserpes K; Tatani I; Lakoumentas J; Megas P Injury; 2022 Dec; 53(12):4072-4085. PubMed ID: 36272844 [TBL] [Abstract][Full Text] [Related]
13. Risk factors for mechanical failure of intertrochanteric fractures after fixation with proximal femoral nail antirotation (PFNA II): a study in a Southeast Asian population. Zhang W; Antony Xavier RP; Decruz J; Chen YD; Park DH Arch Orthop Trauma Surg; 2021 Apr; 141(4):569-575. PubMed ID: 32296964 [TBL] [Abstract][Full Text] [Related]
14. Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study. Konya MN; Verim Ö Balkan Med J; 2017 Sep; 34(5):425-431. PubMed ID: 28443571 [TBL] [Abstract][Full Text] [Related]
15. [Effect of screw blade position on proximal femoral nail anti-rotation internal fixation for unstable intertrochanteric fractures in the elderly]. Zeng J; Ye J; Xie Y; Chen C; Lin Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2020 May; 34(5):569-573. PubMed ID: 32410422 [TBL] [Abstract][Full Text] [Related]
16. No difference between lag screw and helical blade for cephalomedullary nail cut-out a systematic review and meta-analysis. Ng M; Shah NS; Golub I; Ciminero M; Zhai K; Kang KK; Emara AK; Piuzzi NS Eur J Orthop Surg Traumatol; 2022 Dec; 32(8):1617-1625. PubMed ID: 34665292 [TBL] [Abstract][Full Text] [Related]
17. Cement augmentation of the proximal femoral nail antirotation for the treatment of two intertrochanteric fractures - a comparative finite element study. Zheng L; Chen X; Zheng Y; He X; Wu J; Lin Z BMC Musculoskelet Disord; 2021 Dec; 22(1):1010. PubMed ID: 34856965 [TBL] [Abstract][Full Text] [Related]
18. Correlation between cephalic screw positioning of Standard Gamma 3 Nail for intertrochanteric fractures and cut-out incidence. Ortolani A; Lana D; Martucci A; Pesce F; Stallone S; Milani L; Urso R; Melucci G; Tigani D SICOT J; 2024; 10():9. PubMed ID: 38415767 [TBL] [Abstract][Full Text] [Related]
19. Gamma 3 U-Blade lag screws in patients with trochanteric femur fractures: are rotation control lag screws better than others? Yoo J; Kim S; Choi J; Hwang J J Orthop Surg Res; 2019 Dec; 14(1):440. PubMed ID: 31842911 [TBL] [Abstract][Full Text] [Related]
20. Flexible reamer use to overcome entry point errors in proximal femoral nail application in severe obese intertrochanteric fracture patients. Horoz L; Kilic AI; Kircil C; Cakmak MF BMC Musculoskelet Disord; 2024 Oct; 25(1):810. PubMed ID: 39402546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]