These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34756490)

  • 1. Anticipating real-ear insertion response using an external auditory canal model.
    Taiji H; Okamoto Y; Kanzaki J
    Auris Nasus Larynx; 2022 Jun; 49(3):389-395. PubMed ID: 34756490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting wideband real-ear-to-coupler differences in children using wideband acoustic immittance.
    McCreery RW; Grindle A; Merchant GR; Crukley J; Walker EA
    J Acoust Soc Am; 2023 Aug; 154(2):991-1002. PubMed ID: 37581511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Normative wideband absorbance measures in children: a cross-sectional study].
    Wang XY; Wang LM; Li Y; Zhou Y; Jin X; Shi JF; Zheng ZP; Liu P; Liu HH
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 Jul; 58(7):672-680. PubMed ID: 37455112
    [No Abstract]   [Full Text] [Related]  

  • 4. Clinical benefit of wideband-tympanometry: a pediatric audiology clinical study.
    Stuppert L; Nospes S; Bohnert A; Läßig AK; Limberger A; Rader T
    Eur Arch Otorhinolaryngol; 2019 Sep; 276(9):2433-2439. PubMed ID: 31175454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of real-ear insertion gains in Japanese-speaking individuals wearing hearing aids with DSLv5 and NAL-NL2.
    Furuki S; Sano H; Kurioka T; Ogiwara A; Nakagawa T; Inoue R; Umehara S; Hara Y; Suzuki K; Yamashita T
    Auris Nasus Larynx; 2021 Feb; 48(1):75-81. PubMed ID: 32747167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy and reliability of a real-ear-to-coupler difference measurement procedure implemented within a behind-the-ear hearing aid.
    Scollie S; Bagatto M; Moodie S; Crukley J
    J Am Acad Audiol; 2011 Oct; 22(9):612-622. PubMed ID: 22192606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The study of wideband acoustic immittance normative data of young people].
    Fu XX; Liu B; Lin M; Qi BE; Liu JX
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Sep; 31(18):1402-1407. PubMed ID: 29797993
    [No Abstract]   [Full Text] [Related]  

  • 8. Normative sweep frequency impedance measures in healthy neonates.
    Aithal V; Kei J; Driscoll C; Swanston A; Roberts K; Murakoshi M; Wada H
    J Am Acad Audiol; 2014 Apr; 25(4):343-54. PubMed ID: 25126682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on wideband tympanometry and absorbance within a Danish cohort of normal hearing adults.
    Hougaard DD; Lyhne NM; Skals RK; Kristensen M
    Eur Arch Otorhinolaryngol; 2020 Jul; 277(7):1899-1905. PubMed ID: 32172386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband Tympanometry Findings in School-aged Children: Effects of Age, Gender, Ear Laterality, and Ethnicity.
    Downing C; Kei J; Driscoll C; Choi R; Scott D
    Ear Hear; 2022 Jul-Aug 01; 43(4):1245-1255. PubMed ID: 34966158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the characters of wideband tympanometry in newborns with normal hearing].
    Qi BE; Liu WX; Wen C; Chen J; Fu XX; Shi L; Ma Y
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Feb; 32(4):244-249. PubMed ID: 29798498
    [No Abstract]   [Full Text] [Related]  

  • 12. Real ear measurement (REM) and auditory performances with open, tulip and double closed dome in patients using hearing aids.
    Gazia F; Galletti B; Portelli D; Alberti G; Freni F; Bruno R; Galletti F
    Eur Arch Otorhinolaryngol; 2020 May; 277(5):1289-1295. PubMed ID: 32008077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can we predict the altered subjective quality assessment of sound after ear canal surgery?
    Zwemstra MR; Brienesse P; Ebbens FA; de Wolf MJF; van Spronsen E
    Eur Arch Otorhinolaryngol; 2020 Sep; 277(9):2455-2462. PubMed ID: 32335711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in sensation level between the Widex Soundtracker and two real-ear analyzers.
    Oeding K; Valente M
    J Am Acad Audiol; 2013 Sep; 24(8):660-70. PubMed ID: 24131602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of High-Resolution Computed Tomography Imaging for Obtaining Ear Impressions for Hearing Aid Fitting.
    Chen CK; Hsieh LC; Chiang YC; Cheng WD
    Otolaryngol Head Neck Surg; 2019 Oct; 161(4):666-671. PubMed ID: 31060451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability and intersubject variability of the real ear unaided response.
    Valente M; Valente M; Goebel J
    Ear Hear; 1991 Jun; 12(3):216-20. PubMed ID: 1916047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Middle ear pathology can affect the ear-canal sound pressure generated by audiologic earphones.
    Voss SE; Rosowski JJ; Merchant SN; Thornton AR; Shera CA; Peake WT
    Ear Hear; 2000 Aug; 21(4):265-74. PubMed ID: 10981602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wideband tympanometry in ears with superior canal dehiscence before and after surgical correction.
    Velikoselskii A; Papatziamos G; Smeds H; Verrecchia L
    Int J Audiol; 2022 Aug; 61(8):692-697. PubMed ID: 34420430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustics of ear canal measurement of eardrum SPL in simulators.
    Gilman S; Dirks DD
    J Acoust Soc Am; 1986 Sep; 80(3):783-93. PubMed ID: 3760332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.