BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34756840)

  • 21. Contribution of reductase activity to quinone toxicity in three kinds of hepatic cells.
    Ishihara Y; Tsuji K; Ishii S; Kashiwagi K; Shimamoto N
    Biol Pharm Bull; 2012; 35(4):634-8. PubMed ID: 22466573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B.
    Jung HA; Ali MY; Choi JS
    Molecules; 2016 Dec; 22(1):. PubMed ID: 28035984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.
    Griffiths S; Mesarich CH; Saccomanno B; Vaisberg A; De Wit PJ; Cox R; Collemare J
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6851-6. PubMed ID: 27274078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitomycin C is not metabolized by but is an inhibitor of human kidney NAD(P)H: (quinone-acceptor)oxidoreductase.
    Schlager JJ; Powis G
    Cancer Chemother Pharmacol; 1988; 22(2):126-30. PubMed ID: 3136941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Cassia obtusifolia (sicklepod) extracts and anthraquinones on muscle mitochondrial function.
    Lewis DC; Shibamoto T
    Toxicon; 1989; 27(5):519-29. PubMed ID: 2749752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contrasting molecular cytotoxic mechanisms of mitomycin C and its two analogs, BMY 25282 and BMY 25067, in isolated rat hepatocytes.
    Silva JM; Khan S; O'Brien PJ
    Biochem Pharmacol; 1993 Jun; 45(11):2303-9. PubMed ID: 8517871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emodin inhibits tonic tension through suppressing PKCδ-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta.
    Lim KM; Kwon JH; Kim K; Noh JY; Kang S; Park JM; Lee MY; Bae ON; Chung JH
    Br J Pharmacol; 2014 Sep; 171(18):4300-10. PubMed ID: 24909118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NADPH-dependent reduction of ubiquinone-1 associated with the superoxide-forming oxidase of pig polymorphonuclear leucocytes.
    Takeshige K; Wakeyama H; Minakami S
    Biochim Biophys Acta; 1984 Mar; 798(1):127-31. PubMed ID: 6422994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into the practical models for prediciting the essential role of the cytochrome P450-mediated biotransformation in emodin-associated hepatotoxicity.
    Zhang T; He X; Sun L; Wang D; Zhang S; Mao J; Zhang F
    Toxicology; 2021 Oct; 462():152930. PubMed ID: 34492313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anthraquinones inhibit cytochromes P450 enzyme activity in silico and in vitro.
    Liu Y; Mapa MST; Sprando RL
    J Appl Toxicol; 2021 Sep; 41(9):1438-1445. PubMed ID: 33438235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant roles of cellular ubiquinone and related redox cycles: potentiated resistance of rat hepatocytes having stimulated NADPH-dependent ubiquinone reductase against hydrogen peroxide toxicity.
    Takahashi T; Hohda T; Sugimoto N; Mizobuchi S; Okamoto T; Mori K; Kishi T
    Biol Pharm Bull; 1999 Nov; 22(11):1226-33. PubMed ID: 10598033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of the anti-inflammatory effects of three rhubarb anthraquinones in LPS-Stimulated RAW264.7 macrophages using a pharmacodynamic model and evaluation of the structure-activity relationships.
    Hu Y; Huang W; Luo Y; Xiang L; Wu J; Zhang Y; Zeng Y; Xu C; Meng X; Wang P
    J Ethnopharmacol; 2021 Jun; 273():114027. PubMed ID: 33741438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450.
    Goeptar AR; te Koppele JM; van Maanen JM; Zoetemelk CE; Vermeulen NP
    Biochem Pharmacol; 1992 Jan; 43(2):343-52. PubMed ID: 1310854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anthraquinone Removal from
    Liu J; Yin J; Huang X; Liu C; Hu L; Huang Y; Geng F; Nie S
    J Agric Food Chem; 2023 Apr; 71(14):5721-5732. PubMed ID: 36971230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of glutathione reductase during menadione-induced NADPH oxidation in isolated rat hepatocytes.
    Smith PF; Alberts DW; Rush GF
    Biochem Pharmacol; 1987 Nov; 36(22):3879-84. PubMed ID: 3689427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism of 1,8-dihydroxy 3-hydroxy methyl anthraquinone (aloe-emodin) isolated from the leaves of Cassia tora in albino rats.
    Maity TK; Mandal SC; Bhakta T; Pal M; Saha BP
    Phytother Res; 2001 Aug; 15(5):459-60. PubMed ID: 11507746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishing GPCR Targets of hMAO Active Anthraquinones from
    Paudel P; Seong SH; Fauzi FM; Bender A; Jung HA; Choi JS
    ACS Omega; 2020 Apr; 5(13):7705-7715. PubMed ID: 32280914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential ability of cytostatics from anthraquinone group to generate free radicals in three enzymatic systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase.
    Pawłowska J; Tarasiuk J; Wolf CR; Paine MJ; Borowski E
    Oncol Res; 2003; 13(5):245-52. PubMed ID: 12688675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.
    Moridani MY; Cheon SS; Khan S; O'Brien PJ
    Chem Biol Interact; 2003 Jan; 142(3):317-33. PubMed ID: 12453669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase.
    Zani CL; Fairlamb AH
    Mem Inst Oswaldo Cruz; 2003 Jun; 98(4):565-8. PubMed ID: 12937775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.