These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34756950)

  • 1. Graphene oxide interaction with Lemna minor: Root barrier strong enough to prevent nanoblade-morphology-induced toxicity.
    Malina T; Lamaczová A; Maršálková E; Zbořil R; Maršálek B
    Chemosphere; 2022 Mar; 291(Pt 1):132739. PubMed ID: 34756950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The environmental fate of graphene oxide in aquatic environment-Complete mitigation of its acute toxicity to planktonic and benthic crustaceans by algae.
    Malina T; Maršálková E; Holá K; Zbořil R; Maršálek B
    J Hazard Mater; 2020 Nov; 399():123027. PubMed ID: 32937708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio.
    Souza LRR; Bernardes LE; Barbetta MFS; da Veiga MAMS
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):24121-24131. PubMed ID: 31228067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding.
    Malhotra N; Villaflores OB; Audira G; Siregar P; Lee JS; Ger TR; Hsiao CD
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32784859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake.
    Hu C; Liu L; Li X; Xu Y; Ge Z; Zhao Y
    J Hazard Mater; 2018 Jan; 341():168-176. PubMed ID: 28777962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.
    Amy-Sagers C; Reinhardt K; Larson DM
    Aquat Toxicol; 2017 Apr; 185():76-85. PubMed ID: 28192727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites.
    Yue L; Zhao J; Yu X; Lv K; Wang Z; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):543-552. PubMed ID: 30223239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba.
    Alkimin GD; Daniel D; Frankenbach S; Serôdio J; Soares AMVM; Barata C; Nunes B
    Sci Total Environ; 2019 Mar; 657():926-937. PubMed ID: 30677958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of wood leachate to algae Desmodesmus subspicatus and plant Lemna minor.
    Sackey LNA; Mocová KA; Petrová Š; Kočí V
    Environ Sci Pollut Res Int; 2021 Dec; 28(47):67150-67158. PubMed ID: 34247352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth, pigment changes, and photosystem II activity in the aquatic macrophyte Lemna minor exposed to bisphenol A.
    Bourgeade P; Aleya E; Alaoui-Sosse L; Herlem G; Alaoui-Sosse B; Bourioug M
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):68671-68678. PubMed ID: 34275075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2013 Jun; 47(12):6288-96. PubMed ID: 23668881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental transformation of graphene oxide in the aquatic environment.
    Zhao Y; Liu Y; Zhang X; Liao W
    Chemosphere; 2021 Jan; 262():127885. PubMed ID: 32805658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicological effects resulting from co-exposure to nanomaterials and to a β-blocker pharmaceutical drug in the non-target macrophyte species Lemna minor.
    Silva PMMD; Alkimin GD; Camparotto NG; Prediger P; Nunes B
    Environ Pollut; 2023 Apr; 322():121166. PubMed ID: 36738879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bioassay using root re-growth in Lemna.
    Park A; Kim YJ; Choi EM; Brown MT; Han T
    Aquat Toxicol; 2013 Sep; 140-141():415-24. PubMed ID: 23917640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution.
    Gür N; Türker OC; Böcük H
    Chemosphere; 2016 Aug; 157():1-9. PubMed ID: 27192627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of the mycotoxin zearalenone on growth and photosynthetic responses in laboratory populations of freshwater macrophytes (Lemna minor) and microalgae (Pseudokirchneriella subcapitata).
    Eagles EJ; Benstead R; MacDonald S; Handy R; Hutchinson TH
    Ecotoxicol Environ Saf; 2019 Mar; 169():225-231. PubMed ID: 30448705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Original GC/EI/MS total ion chromatograms of
    Kostopoulou S; Ntatsi G; Arapis G; Aliferis KA
    Data Brief; 2019 Dec; 27():104591. PubMed ID: 31700951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytotoxicity tests of solid wastes and contaminated soils in the Czech Republic.
    Kocí V; Mocová K; Kulovaná M; Vosáhlová S
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):611-23. PubMed ID: 19557447
    [