These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34757749)

  • 21. Distinguishing the optimal binding mechanism through reversible and irreversible inhibition analysis of HSP72 protein in cancer therapy.
    Aljoundi A; El Rashedy A; Soliman MES
    Comput Biol Med; 2021 May; 132():104301. PubMed ID: 33751994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations.
    Mihalovits LM; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2020 Dec; 60(12):6579-6594. PubMed ID: 33295760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New drug design with covalent modifiers.
    Adeniyi AA; Muthusamy R; Soliman ME
    Expert Opin Drug Discov; 2016; 11(1):79-90. PubMed ID: 26757171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues.
    Zhang W; Pei J; Lai L
    J Chem Inf Model; 2017 Jun; 57(6):1453-1460. PubMed ID: 28510428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Docking of Covalent Ligands: Challenges and Approaches.
    Sotriffer C
    Mol Inform; 2018 Sep; 37(9-10):e1800062. PubMed ID: 29927068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in Selective and Irreversible Covalent Ligand Development and Validation.
    Zhang T; Hatcher JM; Teng M; Gray NS; Kostic M
    Cell Chem Biol; 2019 Nov; 26(11):1486-1500. PubMed ID: 31631011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMBM - a new enzyme mechanism-based method for rational design of chemical sites of covalent inhibitors.
    Traube T; Vijayakumar S; Hirsch M; Uritsky N; Shokhen M; Albeck A
    J Chem Inf Model; 2010 Dec; 50(12):2256-65. PubMed ID: 21090595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalent binding design strategy: A prospective method for discovery of potent targeted anticancer agents.
    Wang L; Zhao J; Yao Y; Wang C; Zhang J; Shu X; Sun X; Li Y; Liu K; Yuan H; Ma X
    Eur J Med Chem; 2017 Dec; 142():493-505. PubMed ID: 28986130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated ligand based pharmacophore model derived from diverse FAAH covalent ligand classes.
    Shen L; Huang H; Makriyannis A; Fisher LS
    Curr Comput Aided Drug Des; 2012 Dec; 8(4):330-4. PubMed ID: 22734710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs.
    Dahal UP; Obach RS; Gilbert AM
    Chem Res Toxicol; 2013 Nov; 26(11):1739-45. PubMed ID: 24164572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designed covalent allosteric modulators: an emerging paradigm in drug discovery.
    Lu S; Zhang J
    Drug Discov Today; 2017 Feb; 22(2):447-453. PubMed ID: 27888140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Covalent Docking in Drug Discovery: Scope and Limitations.
    Scarpino A; Ferenczy GG; Keserű GM
    Curr Pharm Des; 2020; 26(44):5684-5699. PubMed ID: 33155894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach?
    Kollar J; Frecer V
    J Mol Model; 2017 Dec; 24(1):11. PubMed ID: 29234892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covalent Allosteric Probe for the Metabotropic Glutamate Receptor 2: Design, Synthesis, and Pharmacological Characterization.
    Doornbos MLJ; Wang X; Vermond SC; Peeters L; Pérez-Benito L; Trabanco AA; Lavreysen H; Cid JM; Heitman LH; Tresadern G; IJzerman AP
    J Med Chem; 2019 Jan; 62(1):223-233. PubMed ID: 29494768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the noncovalent binding mode of covalent proteasome inhibitors around the transition state by combined use of cyclopropylic strain-based conformational restriction and computational modeling.
    Kawamura S; Unno Y; Tanaka M; Sasaki T; Yamano A; Hirokawa T; Kameda T; Asai A; Arisawa M; Shuto S
    J Med Chem; 2013 Jul; 56(14):5829-42. PubMed ID: 23837692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protocol for rational design of covalently interacting inhibitors.
    Schmidt TC; Welker A; Rieger M; Sahu PK; Sotriffer CA; Schirmeister T; Engels B
    Chemphyschem; 2014 Oct; 15(15):3226-35. PubMed ID: 25251382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the Binding and Conformational Energetics of a Targeted Covalent Inhibitor to Bruton's Tyrosine Kinase.
    Awoonor-Williams E; Rowley CN
    J Chem Inf Model; 2021 Oct; 61(10):5234-5242. PubMed ID: 34590480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CovalentDock Cloud: a web server for automated covalent docking.
    Ouyang X; Zhou S; Ge Z; Li R; Kwoh CK
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W329-32. PubMed ID: 23677616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine.
    Muth M; Jänsch N; Kopranovic A; Krämer A; Wössner N; Jung M; Kirschhöfer F; Brenner-Weiß G; Meyer-Almes FJ
    Biochim Biophys Acta Gen Subj; 2019 Mar; 1863(3):577-585. PubMed ID: 30611847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.