These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34757749)

  • 41. Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors.
    Flanagan ME; Abramite JA; Anderson DP; Aulabaugh A; Dahal UP; Gilbert AM; Li C; Montgomery J; Oppenheimer SR; Ryder T; Schuff BP; Uccello DP; Walker GS; Wu Y; Brown MF; Chen JM; Hayward MM; Noe MC; Obach RS; Philippe L; Shanmugasundaram V; Shapiro MJ; Starr J; Stroh J; Che Y
    J Med Chem; 2014 Dec; 57(23):10072-9. PubMed ID: 25375838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeted covalent drugs of the kinase family.
    Singh J; Petter RC; Kluge AF
    Curr Opin Chem Biol; 2010 Aug; 14(4):475-80. PubMed ID: 20609616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints.
    Ouyang X; Zhou S; Su CT; Ge Z; Li R; Kwoh CK
    J Comput Chem; 2013 Feb; 34(4):326-36. PubMed ID: 23034731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The resurgence of covalent drugs.
    Singh J; Petter RC; Baillie TA; Whitty A
    Nat Rev Drug Discov; 2011 Apr; 10(4):307-17. PubMed ID: 21455239
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of reversible and irreversible covalent chemistry in targeted protein degradation.
    Kiely-Collins H; Winter GE; Bernardes GJL
    Cell Chem Biol; 2021 Jul; 28(7):952-968. PubMed ID: 33789091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From noncovalent to covalent bonds: a paradigm shift in target protein identification.
    Park J; Koh M; Park SB
    Mol Biosyst; 2013 Apr; 9(4):544-50. PubMed ID: 23354063
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Meisenheimer Complex as a Paradigm in Drug Discovery: Reversible Covalent Inhibition through C67 of the ATP Binding Site of PLK1.
    Pearson RJ; Blake DG; Mezna M; Fischer PM; Westwood NJ; McInnes C
    Cell Chem Biol; 2018 Sep; 25(9):1107-1116.e4. PubMed ID: 30017915
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.
    Moitessier N; Pottel J; Therrien E; Englebienne P; Liu Z; Tomberg A; Corbeil CR
    Acc Chem Res; 2016 Sep; 49(9):1646-57. PubMed ID: 27529781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational design of peptide ligands.
    Vanhee P; van der Sloot AM; Verschueren E; Serrano L; Rousseau F; Schymkowitz J
    Trends Biotechnol; 2011 May; 29(5):231-9. PubMed ID: 21316780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in the Rational Drug Design Based on Multi-target Ligands.
    Yang T; Sui X; Yu B; Shen Y; Cong H
    Curr Med Chem; 2020 Aug; 27(28):4720-4740. PubMed ID: 31894741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theory and applications of covalent docking in drug discovery: merits and pitfalls.
    Kumalo HM; Bhakat S; Soliman ME
    Molecules; 2015 Jan; 20(2):1984-2000. PubMed ID: 25633330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-based design of covalent inhibitors targeting metallo-β-lactamases.
    Chen C; Yang KW
    Eur J Med Chem; 2020 Oct; 203():112573. PubMed ID: 32707526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Suppression of a Protein-Protein Interaction in Cells Using Small-Molecule Covalent Inhibitors Based on an
    Ueda T; Tamura T; Kawano M; Shiono K; Hobor F; Wilson AJ; Hamachi I
    J Am Chem Soc; 2021 Mar; 143(12):4766-4774. PubMed ID: 33733756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in covalent kinase inhibitors.
    Abdeldayem A; Raouf YS; Constantinescu SN; Moriggl R; Gunning PT
    Chem Soc Rev; 2020 May; 49(9):2617-2687. PubMed ID: 32227030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reversible Michael additions: covalent inhibitors and prodrugs.
    Johansson MH
    Mini Rev Med Chem; 2012 Nov; 12(13):1330-44. PubMed ID: 22625413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Cysteinome of Protein Kinases as a Target in Drug Development.
    Chaikuad A; Koch P; Laufer SA; Knapp S
    Angew Chem Int Ed Engl; 2018 Apr; 57(16):4372-4385. PubMed ID: 28994500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling covalent-modifier drugs.
    Awoonor-Williams E; Walsh AG; Rowley CN
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1664-1675. PubMed ID: 28528876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The design of covalent allosteric drugs.
    Nussinov R; Tsai CJ
    Annu Rev Pharmacol Toxicol; 2015; 55():249-67. PubMed ID: 25149918
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors.
    Liu R; Yue Z; Tsai CC; Shen J
    J Am Chem Soc; 2019 Apr; 141(16):6553-6560. PubMed ID: 30945531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinguishing the optimal binding mechanism of an E3 ubiquitin ligase: Covalent versus noncovalent inhibition.
    Bjij I; Khan S; Ramharak P; Cherqaoui D; Soliman MES
    J Cell Biochem; 2019 Aug; 120(8):12859-12869. PubMed ID: 30854719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.