BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 34757822)

  • 41. Bifidobacterium breve UCC2003 Employs Multiple Transcriptional Regulators To Control Metabolism of Particular Human Milk Oligosaccharides.
    James K; O'Connell Motherway M; Penno C; O'Brien RL; van Sinderen D
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.
    Garrido D; Ruiz-Moyano S; Lemay DG; Sela DA; German JB; Mills DA
    Sci Rep; 2015 Sep; 5():13517. PubMed ID: 26337101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bifidobacterium mongoliense genome seems particularly adapted to milk oligosaccharide digestion leading to production of antivirulent metabolites.
    Bondue P; Milani C; Arnould E; Ventura M; Daube G; LaPointe G; Delcenserie V
    BMC Microbiol; 2020 May; 20(1):111. PubMed ID: 32380943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of Bifidobacterium pseudocatenulatum in Degradation and Consumption of Xylan-Derived Carbohydrates.
    Drey E; Kok CR; Hutkins R
    Appl Environ Microbiol; 2022 Oct; 88(20):e0129922. PubMed ID: 36200766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating bifidobacteria and human milk oligosaccharide composition of lactating mothers.
    Lugli GA; Duranti S; Milani C; Mancabelli L; Turroni F; Alessandri G; Longhi G; Anzalone R; Viappinai A; Tarracchini C; Bernasconi S; Yonemitsu C; Bode L; Goran MI; Ossiprandi MC; van Sinderen D; Ventura M
    FEMS Microbiol Ecol; 2020 May; 96(5):. PubMed ID: 32188978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes.
    Fushinobu S; Abou Hachem M
    Biochem Soc Trans; 2021 Apr; 49(2):563-578. PubMed ID: 33666221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study.
    De Leoz ML; Kalanetra KM; Bokulich NA; Strum JS; Underwood MA; German JB; Mills DA; Lebrilla CB
    J Proteome Res; 2015 Jan; 14(1):491-502. PubMed ID: 25300177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides.
    Yoshida E; Sakurama H; Kiyohara M; Nakajima M; Kitaoka M; Ashida H; Hirose J; Katayama T; Yamamoto K; Kumagai H
    Glycobiology; 2012 Mar; 22(3):361-8. PubMed ID: 21926104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides.
    Ojima MN; Jiang L; Arzamasov AA; Yoshida K; Odamaki T; Xiao J; Nakajima A; Kitaoka M; Hirose J; Urashima T; Katoh T; Gotoh A; van Sinderen D; Rodionov DA; Osterman AL; Sakanaka M; Katayama T
    ISME J; 2022 Sep; 16(9):2265-2279. PubMed ID: 35768643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Loop engineering of an α-1,3/4-l-fucosidase for improved synthesis of human milk oligosaccharides.
    Zeuner B; Vuillemin M; Holck J; Muschiol J; Meyer AS
    Enzyme Microb Technol; 2018 Aug; 115():37-44. PubMed ID: 29859601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics.
    Berger B; Porta N; Foata F; Grathwohl D; Delley M; Moine D; Charpagne A; Siegwald L; Descombes P; Alliet P; Puccio G; Steenhout P; Mercenier A; Sprenger N
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community.
    Davis JC; Totten SM; Huang JO; Nagshbandi S; Kirmiz N; Garrido DA; Lewis ZT; Wu LD; Smilowitz JT; German JB; Mills DA; Lebrilla CB
    Mol Cell Proteomics; 2016 Sep; 15(9):2987-3002. PubMed ID: 27435585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria.
    Kiely LJ; Busca K; Lane JA; van Sinderen D; Hickey RM
    FEMS Microbiol Rev; 2023 Nov; 47(6):. PubMed ID: 37793834
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by
    Román L; Melis-Arcos F; Pröschle T; Saa PA; Garrido D
    mSystems; 2024 Mar; 9(3):e0071523. PubMed ID: 38363147
    [No Abstract]   [Full Text] [Related]  

  • 55. Digestion of Human Milk Oligosaccharides by Bifidobacterium breve in the Premature Infant.
    Underwood MA; Davis JCC; Kalanetra KM; Gehlot S; Patole S; Tancredi DJ; Mills DA; Lebrilla CB; Simmer K
    J Pediatr Gastroenterol Nutr; 2017 Oct; 65(4):449-455. PubMed ID: 28945208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates.
    Kiyohara M; Tanigawa K; Chaiwangsri T; Katayama T; Ashida H; Yamamoto K
    Glycobiology; 2011 Apr; 21(4):437-47. PubMed ID: 21036948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria.
    Katayama T
    Biosci Biotechnol Biochem; 2016; 80(4):621-32. PubMed ID: 26838671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HMOs Exert Marked Bifidogenic Effects on Children's Gut Microbiota Ex Vivo, Due to Age-Related
    Bajic D; Wiens F; Wintergerst E; Deyaert S; Baudot A; Van den Abbeele P
    Nutrients; 2023 Mar; 15(7):. PubMed ID: 37049541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fucosidases from the human gut symbiont Ruminococcus gnavus.
    Wu H; Rebello O; Crost EH; Owen CD; Walpole S; Bennati-Granier C; Ndeh D; Monaco S; Hicks T; Colvile A; Urbanowicz PA; Walsh MA; Angulo J; Spencer DIR; Juge N
    Cell Mol Life Sci; 2021 Jan; 78(2):675-693. PubMed ID: 32333083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bifidobacterium bifidum ATCC 15696 and Bifidobacterium breve 24b Metabolic Interaction Based on 2'-
    Centanni M; Ferguson SA; Sims IM; Biswas A; Tannock GW
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.