BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 34757822)

  • 61. Fucosylated Human Milk Oligosaccharides and N-Glycans in the Milk of Chinese Mothers Regulate the Gut Microbiome of Their Breast-Fed Infants during Different Lactation Stages.
    Bai Y; Tao J; Zhou J; Fan Q; Liu M; Hu Y; Xu Y; Zhang L; Yuan J; Li W; Ze X; Malard P; Guo Z; Yan J; Li M
    mSystems; 2018; 3(6):. PubMed ID: 30637338
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Patterns of Human Milk Oligosaccharides in Mature Milk Are Associated with Certain Gut Microbiota in Infants.
    Mao S; Zhao A; Jiang H; Yan J; Zhong W; Xun Y; Zhang Y
    Nutrients; 2024 Apr; 16(9):. PubMed ID: 38732534
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut.
    Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220841
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3'-fucosyllactose and 2'-fucosyllactose.
    Shi R; Ma J; Yan Q; Yang S; Fan Z; Jiang Z
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):5813-5826. PubMed ID: 32388762
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gold standard for nutrition: a review of human milk oligosaccharide and its effects on infant gut microbiota.
    Zhang S; Li T; Xie J; Zhang D; Pi C; Zhou L; Yang W
    Microb Cell Fact; 2021 May; 20(1):108. PubMed ID: 34049536
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal.
    James K; Bottacini F; Contreras JIS; Vigoureux M; Egan M; Motherway MO; Holmes E; van Sinderen D
    Sci Rep; 2019 Oct; 9(1):15427. PubMed ID: 31659215
    [TBL] [Abstract][Full Text] [Related]  

  • 67. CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei.
    Kijner S; Ennis D; Shmorak S; Florentin A; Yassour M
    Nat Commun; 2024 Jan; 15(1):105. PubMed ID: 38167825
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Comparative Analysis of Genomic Diversity and Genes Involved in Carbohydrate Metabolism of Eighty-Eight
    Lin G; Liu Q; Wang L; Li H; Zhao J; Zhang H; Wang G; Chen W
    Nutrients; 2022 Jun; 14(11):. PubMed ID: 35684146
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fucoidan-active α-L-fucosidases of the GH29 and GH95 families from a fucoidan degrading cluster of the marine bacterium Wenyingzhuangia fucanilytica.
    Silchenko AS; Rubtsov NK; Zueva AO; Kusaykin MI; Rasin AB; Ermakova SP
    Arch Biochem Biophys; 2022 Oct; 728():109373. PubMed ID: 35940339
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Beneficial effects of human milk oligosaccharides on gut microbiota.
    Musilova S; Rada V; Vlkova E; Bunesova V
    Benef Microbes; 2014 Sep; 5(3):273-83. PubMed ID: 24913838
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Analysis of Fucosylated Human Milk Trisaccharides in Biotechnological Context Using Genetically Encoded Biosensors.
    Enam F; Mansell TJ
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31033942
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species.
    Walsh C; Lane JA; van Sinderen D; Hickey RM
    Sci Rep; 2022 Mar; 12(1):4143. PubMed ID: 35264656
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics.
    Arzamasov AA; Osterman AL
    Crit Rev Biochem Mol Biol; 2022; 57(5-6):562-584. PubMed ID: 36866565
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparative Genomic Analysis of Novel
    Díaz R; Torres-Miranda A; Orellana G; Garrido D
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576801
    [No Abstract]   [Full Text] [Related]  

  • 75. Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria.
    Hermes GDA; Rasmussen C; Wellejus A
    Nutrients; 2024 Jun; 16(12):. PubMed ID: 38931248
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides.
    Locascio RG; Niñonuevo MR; Kronewitter SR; Freeman SL; German JB; Lebrilla CB; Mills DA
    Microb Biotechnol; 2009 May; 2(3):333-42. PubMed ID: 21261928
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genotyping and plant-derived glycan utilization analysis of Bifidobacterium strains from mother-infant pairs.
    Kan Z; Luo B; Cai J; Zhang Y; Tian F; Ni Y
    BMC Microbiol; 2020 Sep; 20(1):277. PubMed ID: 32912151
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Maternal Fucosyltransferase 2 Status Associates with the Profiles of Human Milk Oligosaccharides and the Fecal Microbiota Composition of Breastfed Infants.
    Liu F; Yan J; Wang X; Wang C; Chen L; Li Y; Chen J; Guo H
    J Agric Food Chem; 2021 Mar; 69(10):3032-3043. PubMed ID: 33677972
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1-2 fucosylated oligosaccharides in breast milk.
    Tonon KM; Morais TB; Taddei CR; Araújo-Filho HB; Abrão ACFV; Miranda A; de Morais MB
    PLoS One; 2021; 16(2):e0246839. PubMed ID: 33556125
    [TBL] [Abstract][Full Text] [Related]  

  • 80. HMO-primed bifidobacteria exhibit enhanced ability to adhere to intestinal epithelial cells.
    Walsh C; Owens RA; Bottacini F; Lane JA; van Sinderen D; Hickey RM
    Front Microbiol; 2023; 14():1232173. PubMed ID: 38163079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.