BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34757954)

  • 1. Spatio-temporal warping for myoelectric control: an offline, feasibility study.
    Jabbari M; Khushaba R; Nazarpour K
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34757954
    [No Abstract]   [Full Text] [Related]  

  • 2. Combined Dynamic Time Warping and Spatiotemporal Attention for Myoelectric Control.
    Jabbari M; Khushaba RN; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5940-5943. PubMed ID: 34892471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromyography Based Decoding of Dexterous, In-Hand Manipulation Motions With Temporal Multichannel Vision Transformers.
    Godoy RV; Dwivedi A; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2207-2216. PubMed ID: 35930510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques.
    Zia Ur Rehman M; Waris A; Gilani SO; Jochumsen M; Niazi IK; Jamil M; Farina D; Kamavuako EN
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.
    Liu J; Li X; Li G; Zhou P
    Med Eng Phys; 2014 Jul; 36(7):975-80. PubMed ID: 24844608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG.
    Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation.
    Guo B; Ma Y; Yang J; Wang Z; Zhang X
    Comput Intell Neurosci; 2020; 2020():8846021. PubMed ID: 33456452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardinality and Short-Term Memory Concepts based Novel Feature Extraction for Myoelectric Pattern Recognition.
    Al Taee AA; Khushaba RN; Zia T; Al Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():708-712. PubMed ID: 34891390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-Temporal Inertial Measurements Feature Extraction Improves Hand Movement Pattern Recognition without Electromyography.
    Khushaba RN; Krasoulis A; Al-Jumaily A; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2108-2111. PubMed ID: 30440819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual Identification by Late Information Fusion of EmgCNN and EmgLSTM from Electromyogram Signals.
    Byeon YH; Kwak KC
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time.
    Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852
    [No Abstract]   [Full Text] [Related]  

  • 13. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effectiveness of Narrowing the Window size for LD & HD EMG Channels based on Novel Deep Learning Wavelet Scattering Transform Feature Extraction Approach.
    Al Taee AA; Khushaba RN; Zia T; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3698-3701. PubMed ID: 36086593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunction myoelectric control using multi-dimensional dynamic time warping.
    AbdelMaseeh M; Tsu-Wei Chen ; Stashuk D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4366-9. PubMed ID: 25570959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring.
    Pathak S; Lu C; Nagaraj SB; van Putten M; Seifert C
    Artif Intell Med; 2021 Apr; 114():102038. PubMed ID: 33875157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.