These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 34758191)
1. High-throughput sequencing of faeces provides evidence for dispersal of parasites and pathogens by migratory waterbirds. Briscoe AG; Nichols S; Hartikainen H; Knipe H; Foster R; Green AJ; Okamura B; Bass D Mol Ecol Resour; 2022 May; 22(4):1303-1318. PubMed ID: 34758191 [TBL] [Abstract][Full Text] [Related]
2. Untargeted metagenomics shows a reliable performance for synchronous detection of parasites. Wylezich C; Caccio SM; Walochnik J; Beer M; Höper D Parasitol Res; 2020 Aug; 119(8):2623-2629. PubMed ID: 32591865 [TBL] [Abstract][Full Text] [Related]
3. Metagenomics for broad and improved parasite detection: a proof-of-concept study using swine faecal samples. Wylezich C; Belka A; Hanke D; Beer M; Blome S; Höper D Int J Parasitol; 2019 Sep; 49(10):769-777. PubMed ID: 31361998 [TBL] [Abstract][Full Text] [Related]
4. Improved 18S and 28S rDNA primer sets for NGS-based parasite detection. Kounosu A; Murase K; Yoshida A; Maruyama H; Kikuchi T Sci Rep; 2019 Oct; 9(1):15789. PubMed ID: 31673037 [TBL] [Abstract][Full Text] [Related]
5. Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Jarma D; Sánchez MI; Green AJ; Peralta-Sánchez JM; Hortas F; Sánchez-Melsió A; Borrego CM Sci Total Environ; 2021 Aug; 783():146872. PubMed ID: 33872913 [TBL] [Abstract][Full Text] [Related]
6. Restriction enzyme digestion of host DNA enhances universal detection of parasitic pathogens in blood via targeted amplicon deep sequencing. Flaherty BR; Talundzic E; Barratt J; Kines KJ; Olsen C; Lane M; Sheth M; Bradbury RS Microbiome; 2018 Sep; 6(1):164. PubMed ID: 30223888 [TBL] [Abstract][Full Text] [Related]
7. Sensitive universal detection of blood parasites by selective pathogen-DNA enrichment and deep amplicon sequencing. Flaherty BR; Barratt J; Lane M; Talundzic E; Bradbury RS Microbiome; 2021 Jan; 9(1):1. PubMed ID: 33388088 [TBL] [Abstract][Full Text] [Related]
8. Protocols for metagenomic DNA extraction and Illumina amplicon library preparation for faecal and swab samples. Vo AT; Jedlicka JA Mol Ecol Resour; 2014 Nov; 14(6):1183-97. PubMed ID: 24774752 [TBL] [Abstract][Full Text] [Related]
9. Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches. Kakumanu ML; Maritz JM; Carlton JM; Schal C Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959246 [TBL] [Abstract][Full Text] [Related]
10. Temporal dynamics of freshwater planktonic parasites inferred using a DNA metabarcoding time-series. Beng KC; Wolinska J; Funke E; Van den Wyngaert S; Gsell AS; Monaghan MT Parasitology; 2021 Nov; 148(13):1602-1611. PubMed ID: 35060465 [TBL] [Abstract][Full Text] [Related]
11. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. Tanaka R; Hino A; Tsai IJ; Palomares-Rius JE; Yoshida A; Ogura Y; Hayashi T; Maruyama H; Kikuchi T PLoS One; 2014; 9(10):e110769. PubMed ID: 25340824 [TBL] [Abstract][Full Text] [Related]
12. Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing. Decelle J; Romac S; Sasaki E; Not F; Mahé F PLoS One; 2014; 9(8):e104297. PubMed ID: 25090095 [TBL] [Abstract][Full Text] [Related]
13. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Bartolomé C; Jabal-Uriel C; Buendía-Abad M; Benito M; Ornosa C; De la Rúa P; Martín-Hernández R; Higes M; Maside X Environ Microbiol; 2021 Jan; 23(1):478-483. PubMed ID: 33225560 [TBL] [Abstract][Full Text] [Related]
14. The effect of metabarcoding 18S rRNA region choice on diversity of microeukaryotes including phytoplankton. Bukin YS; Mikhailov IS; Petrova DP; Galachyants YP; Zakharova YR; Likhoshway YV World J Microbiol Biotechnol; 2023 Jun; 39(9):229. PubMed ID: 37341802 [TBL] [Abstract][Full Text] [Related]
15. Assessing myxozoan presence and diversity using environmental DNA. Hartikainen H; Bass D; Briscoe AG; Knipe H; Green AJ; Okamura B Int J Parasitol; 2016 Nov; 46(12):781-792. PubMed ID: 27623220 [TBL] [Abstract][Full Text] [Related]
16. A high-throughput sequencing assay to comprehensively detect and characterize unicellular eukaryotes and helminths from biological and environmental samples. Cannon MV; Bogale H; Rutt L; Humphrys M; Korpe P; Duggal P; Ravel J; Serre D Microbiome; 2018 Oct; 6(1):195. PubMed ID: 30373673 [TBL] [Abstract][Full Text] [Related]
17. Characterizing parasitic nematode faunas in faeces and soil using DNA metabarcoding. Davey ML; Utaaker KS; Fossøy F Parasit Vectors; 2021 Aug; 14(1):422. PubMed ID: 34419166 [TBL] [Abstract][Full Text] [Related]
18. Metabarcoding options to study eukaryotic endoparasites of birds. Bourret V; Gutiérrez López R; Melo M; Loiseau C Ecol Evol; 2021 Aug; 11(16):10821-10833. PubMed ID: 34429884 [TBL] [Abstract][Full Text] [Related]
19. Design and application of a novel two-amplicon approach for defining eukaryotic microbiota. Popovic A; Bourdon C; Wang PW; Guttman DS; Voskuijl W; Grigg ME; Bandsma RHJ; Parkinson J Microbiome; 2018 Dec; 6(1):228. PubMed ID: 30572961 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. Hadziavdic K; Lekang K; Lanzen A; Jonassen I; Thompson EM; Troedsson C PLoS One; 2014; 9(2):e87624. PubMed ID: 24516555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]