BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34758363)

  • 1. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy.
    Mani S; Swargiary G; Ralph SJ
    Mitochondrion; 2022 Jan; 62():50-73. PubMed ID: 34758363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Production of Reactive Oxygen Species as an Anticancer Strategy.
    Marioli-Sapsakou GK; Kourti M
    Anticancer Res; 2021 Dec; 41(12):5881-5902. PubMed ID: 34848443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Effect of Native 1,4-Naphthoquinones Plumbagin, Menadione, and Lawsone on Viability, Redox Status, and Mitochondrial Functions of C6 Glioblastoma Cells.
    Majiene D; Kuseliauskyte J; Stimbirys A; Jekabsone A
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31181639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding of ROS-Inducing Strategy in Anticancer Therapy.
    Kim SJ; Kim HS; Seo YR
    Oxid Med Cell Longev; 2019; 2019():5381692. PubMed ID: 31929855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
    Yang Y; Karakhanova S; Hartwig W; D'Haese JG; Philippov PP; Werner J; Bazhin AV
    J Cell Physiol; 2016 Dec; 231(12):2570-81. PubMed ID: 26895995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-targeted induction of oxystress for cancer therapy.
    Fang J; Nakamura H; Iyer AK
    J Drug Target; 2007; 15(7-8):475-86. PubMed ID: 17671894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species in cancer: Current findings and future directions.
    Nakamura H; Takada K
    Cancer Sci; 2021 Oct; 112(10):3945-3952. PubMed ID: 34286881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells.
    Zhang H; Kong X; Kang J; Su J; Li Y; Zhong J; Sun L
    Toxicol Sci; 2009 Aug; 110(2):376-88. PubMed ID: 19451193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids.
    Khan AQ; Rashid K; AlAmodi AA; Agha MV; Akhtar S; Hakeem I; Raza SS; Uddin S
    Biomed Pharmacother; 2021 Nov; 143():112142. PubMed ID: 34536761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy.
    Zhao Y; Qu T; Wang P; Li X; Qiang J; Xia Z; Duan H; Huang J; Zhu L
    Apoptosis; 2016 May; 21(5):517-31. PubMed ID: 27007273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs.
    Cordero MD; Sánchez-Alcázar JA; Bautista-Ferrufino MR; Carmona-López MI; Illanes M; Ríos MJ; Garrido-Maraver J; Alcudia A; Navas P; de Miguel M
    Anticancer Drugs; 2010 Nov; 21(10):932-44. PubMed ID: 20847644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance.
    Manna A; De Sarkar S; De S; Bauri AK; Chattopadhyay S; Chatterjee M
    Phytomedicine; 2015 Jul; 22(7-8):713-23. PubMed ID: 26141757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer cell killing via ROS: to increase or decrease, that is the question.
    Wang J; Yi J
    Cancer Biol Ther; 2008 Dec; 7(12):1875-84. PubMed ID: 18981733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repurposing drugs as pro-oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers.
    Ralph SJ; Nozuhur S; ALHulais RA; Rodríguez-Enríquez S; Moreno-Sánchez R
    Med Res Rev; 2019 Nov; 39(6):2397-2426. PubMed ID: 31111530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells.
    Nagai M; Vo NH; Shin Ogawa L; Chimmanamada D; Inoue T; Chu J; Beaudette-Zlatanova BC; Lu R; Blackman RK; Barsoum J; Koya K; Wada Y
    Free Radic Biol Med; 2012 May; 52(10):2142-50. PubMed ID: 22542443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-targeted resveratrol derivatives act as cytotoxic pro-oxidants.
    Sassi N; Mattarei A; Azzolini M; Bernardi P; Szabo' I; Paradisi C; Zoratti M; Biasutto L
    Curr Pharm Des; 2014; 20(2):172-9. PubMed ID: 23701548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Development of ROS-Modulating Agents as Novel Antitumor Therapy.
    Wang N; Wu Y; Bian J; Qian X; Lin H; Sun H; You Q; Zhang X
    Curr Cancer Drug Targets; 2017; 17(2):122-136. PubMed ID: 26881931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of reactive oxygen species: an emerging approach for cancer therapy.
    Zou Z; Chang H; Li H; Wang S
    Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.