BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34758363)

  • 21. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.
    Pathania D; Millard M; Neamati N
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1250-75. PubMed ID: 19716393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular chaperone Hsp90 as a target for oxidant-based anticancer therapies.
    Beck R; Dejeans N; Glorieux C; Pedrosa RC; Vásquez D; Valderrama JA; Calderon PB; Verrax J
    Curr Med Chem; 2011; 18(18):2816-25. PubMed ID: 21568884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-induced oxidative stress in cancer treatments: Angel or devil?
    Jiang H; Zuo J; Li B; Chen R; Luo K; Xiang X; Lu S; Huang C; Liu L; Tang J; Gao F
    Redox Biol; 2023 Jul; 63():102754. PubMed ID: 37224697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy.
    León-González AJ; Auger C; Schini-Kerth VB
    Biochem Pharmacol; 2015 Dec; 98(3):371-80. PubMed ID: 26206193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developing glutathione-activated catechol-type diphenylpolyenes as small molecule-based and mitochondria-targeted prooxidative anticancer theranostic prodrugs.
    Bao XZ; Dai F; Wang Q; Jin XL; Zhou B
    Free Radic Biol Med; 2019 Apr; 134():406-418. PubMed ID: 30707929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic rewiring in cancer cells overexpressing the glucocorticoid-induced leucine zipper protein (GILZ): Activation of mitochondrial oxidative phosphorylation and sensitization to oxidative cell death induced by mitochondrial targeted drugs.
    André F; Trinh A; Balayssac S; Maboudou P; Dekiouk S; Malet-Martino M; Quesnel B; Idziorek T; Kluza J; Marchetti P
    Int J Biochem Cell Biol; 2017 Apr; 85():166-174. PubMed ID: 28259749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress and therapeutic opportunities: focus on the Ewing's sarcoma family of tumors.
    Smith DG; Magwere T; Burchill SA
    Expert Rev Anticancer Ther; 2011 Feb; 11(2):229-49. PubMed ID: 21342042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The redox-active nanomaterial toolbox for cancer therapy.
    Ibañez IL; Notcovich C; Catalano PN; Bellino MG; Durán H
    Cancer Lett; 2015 Apr; 359(1):9-19. PubMed ID: 25597786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage.
    Kim H; Lee GR; Kim J; Baek JY; Jo YJ; Hong SE; Kim SH; Lee J; Lee HI; Park SK; Kim HM; Lee HJ; Chang TS; Rhee SG; Lee JS; Jeong W
    Free Radic Biol Med; 2016 Feb; 91():264-74. PubMed ID: 26721593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress.
    Klingelhoeffer C; Kämmerer U; Koospal M; Mühling B; Schneider M; Kapp M; Kübler A; Germer CT; Otto C
    BMC Complement Altern Med; 2012 May; 12():61. PubMed ID: 22551313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of oxidative stress as an anticancer strategy.
    Gorrini C; Harris IS; Mak TW
    Nat Rev Drug Discov; 2013 Dec; 12(12):931-47. PubMed ID: 24287781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental therapeutics: targeting the redox Achilles heel of cancer.
    Cabello CM; Bair WB; Wondrak GT
    Curr Opin Investig Drugs; 2007 Dec; 8(12):1022-37. PubMed ID: 18058573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Celecoxib inhibits mitochondrial O
    Pritchard R; Rodríguez-Enríquez S; Pacheco-Velázquez SC; Bortnik V; Moreno-Sánchez R; Ralph S
    Biochem Pharmacol; 2018 Aug; 154():318-334. PubMed ID: 29800556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting Redox Metabolism in Pancreatic Cancer.
    Abdel Hadi N; Reyes-Castellanos G; Carrier A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. To betray or to fight? The dual identity of the mitochondria in cancer.
    Zhang X; Su Q; Zhou J; Yang Z; Liu Z; Ji L; Gao H; Jiang G
    Future Oncol; 2021 Feb; 17(6):723-743. PubMed ID: 33459048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective.
    Khan SU; Fatima K; Aisha S; Hamza B; Malik F
    Med Oncol; 2022 Nov; 40(1):12. PubMed ID: 36352310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox control of cancer cell destruction.
    Hegedűs C; Kovács K; Polgár Z; Regdon Z; Szabó É; Robaszkiewicz A; Forman HJ; Martner A; Virág L
    Redox Biol; 2018 Jun; 16():59-74. PubMed ID: 29477046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells.
    González-Bártulos M; Aceves-Luquero C; Qualai J; Cussó O; Martínez MA; Fernández de Mattos S; Menéndez JA; Villalonga P; Costas M; Ribas X; Massaguer A
    PLoS One; 2015; 10(9):e0137800. PubMed ID: 26368127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.