BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34758398)

  • 1. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss.
    Rumschlag JA; Razak KA
    Hear Res; 2021 Dec; 412():108380. PubMed ID: 34758398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human evoked cortical activity to silent gaps in noise: effects of age, attention, and cortical processing speed.
    Harris KC; Wilson S; Eckert MA; Dubno JR
    Ear Hear; 2012; 33(3):330-9. PubMed ID: 22374321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.
    Pauli-Magnus D; Hoch G; Strenzke N; Anderson S; Jentsch TJ; Moser T
    Neuroscience; 2007 Nov; 149(3):673-84. PubMed ID: 17869440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of 40 Hz auditory steady-state response (ASSR) and cortical auditory evoked potential (CAEP) thresholds in awake adult subjects.
    Tomlin D; Rance G; Graydon K; Tsialios I
    Int J Audiol; 2006 Oct; 45(10):580-8. PubMed ID: 17062499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.
    Roberts LE; Bosnyak DJ; Bruce IC; Gander PE; Paul BT
    Hear Res; 2015 Sep; 327():9-27. PubMed ID: 25937134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome.
    Croom K; Rumschlag JA; Erickson MA; Binder DK; Razak KA
    J Neurodev Disord; 2023 Jul; 15(1):23. PubMed ID: 37516865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences during development in cortical temporal processing and event related potentials in wild-type and fragile X syndrome model mice.
    Croom K; Rumschlag JA; Erickson MA; Binder D; Razak KA
    J Neurodev Disord; 2024 May; 16(1):24. PubMed ID: 38720271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal ipsilateral/contralateral asymmetries in infant multiple auditory steady-state responses to air- and bone-conduction stimuli.
    Small SA; Stapells DR
    Ear Hear; 2008 Apr; 29(2):185-98. PubMed ID: 18595185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting hearing thresholds in occupational noise-induced hearing loss by auditory steady state responses.
    Attias J; Karawani H; Shemesh R; Nageris B
    Ear Hear; 2014; 35(3):330-8. PubMed ID: 24509531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison.
    Johnson TA; Brown CJ
    Ear Hear; 2005 Dec; 26(6):559-76. PubMed ID: 16377993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age- and movement-related modulation of cortical oscillations in a mouse model of presbycusis.
    Rumschlag JA; Lovelace JW; Razak KA
    Hear Res; 2021 Mar; 402():108095. PubMed ID: 33707000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory steady-state responses during and after a stimulus: Cortical sources, and the influence of attention and musicality.
    Manting CL; Gulyas B; Ullén F; Lundqvist D
    Neuroimage; 2021 Jun; 233():117962. PubMed ID: 33744455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of audiometric configuration on threshold and suprathreshold auditory steady-state responses.
    Vander Werff KR; Brown CJ
    Ear Hear; 2005 Jun; 26(3):310-26. PubMed ID: 15937412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing.
    Small SA; Stapells DR
    Ear Hear; 2006 Jun; 27(3):219-28. PubMed ID: 16672791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory steady state responses elicited by silent gaps embedded within a broadband noise.
    Kadowaki S; Morimoto T; Okamoto H
    BMC Neurosci; 2022 May; 23(1):27. PubMed ID: 35524192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of auditory steady-state responses and auditory brainstem responses in audiometric assessment of adults with sensorineural hearing loss.
    Lin YH; Ho HC; Wu HP
    Auris Nasus Larynx; 2009 Apr; 36(2):140-5. PubMed ID: 18620826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory-evoked cortical activity: contribution of brain noise, phase locking, and spectral power.
    Harris KC; Vaden KI; Dubno JR
    J Basic Clin Physiol Pharmacol; 2014 Sep; 25(3):277-84. PubMed ID: 25046314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.