These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34758626)

  • 21. Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: The example of tacrolimus.
    Woillard JB; Labriffe M; Prémaud A; Marquet P
    Pharmacol Res; 2021 May; 167():105578. PubMed ID: 33775863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Silico Models of Human PK Parameters. Prediction of Volume of Distribution Using an Extensive Data Set and a Reduced Number of Parameters.
    Lombardo F; Bentzien J; Berellini G; Muegge I
    J Pharm Sci; 2021 Jan; 110(1):500-509. PubMed ID: 32891631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the Accuracy of Predicted Human Pharmacokinetics: Lessons Learned from the AstraZeneca Drug Pipeline Over Two Decades.
    Davies M; Jones RDO; Grime K; Jansson-Löfmark R; Fretland AJ; Winiwarter S; Morgan P; McGinnity DF
    Trends Pharmacol Sci; 2020 Jun; 41(6):390-408. PubMed ID: 32359836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics.
    Ota R; Yamashita F
    J Control Release; 2022 Dec; 352():961-969. PubMed ID: 36370876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a Physiologically Based Pharmacokinetic Model for Sinogliatin, a First-in-Class Glucokinase Activator, by Integrating Allometric Scaling, In Vitro to In Vivo Exploration and Steady-State Concentration-Mean Residence Time Methods: Mechanistic Understanding of its Pharmacokinetics.
    Song L; Zhang Y; Jiang J; Ren S; Chen L; Liu D; Chen X; Hu P
    Clin Pharmacokinet; 2018 Oct; 57(10):1307-1323. PubMed ID: 29626326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer learning empowers accurate pharmacokinetics prediction of small samples.
    Guo W; Dong Y; Hao GF
    Drug Discov Today; 2024 Apr; 29(4):103946. PubMed ID: 38460571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does human pharmacokinetic prediction add significant value to compound selection in drug discovery research?
    Beaumont K; Smith DA
    Curr Opin Drug Discov Devel; 2009 Jan; 12(1):61-71. PubMed ID: 19152214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Volume of Distribution in Humans: Performance of In Silico Methods for a Large Set of Structurally Diverse Clinical Compounds.
    Murad N; Pasikanti KK; Madej BD; Minnich A; McComas JM; Crouch S; Polli JW; Weber AD
    Drug Metab Dispos; 2021 Feb; 49(2):169-178. PubMed ID: 33239335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach.
    Poulin P; Jones RD; Jones HM; Gibson CR; Rowland M; Chien JY; Ring BJ; Adkison KK; Ku MS; He H; Vuppugalla R; Marathe P; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Yates JW
    J Pharm Sci; 2011 Oct; 100(10):4127-57. PubMed ID: 21541937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis.
    Peters SA
    Clin Pharmacokinet; 2008; 47(4):261-75. PubMed ID: 18336055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Risk assessment in extrapolation of pharmacokinetics from preclinical data to humans.
    Teitelbaum Z; Lave T; Freijer J; Cohen AF
    Clin Pharmacokinet; 2010 Sep; 49(9):619-32. PubMed ID: 20690784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning-Based Modeling of Drug Toxicity.
    Lu J; Lu D; Fu Z; Zheng M; Luo X
    Methods Mol Biol; 2018; 1754():247-264. PubMed ID: 29536448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies.
    Chen Y; Jin JY; Mukadam S; Malhi V; Kenny JR
    Biopharm Drug Dispos; 2012 Mar; 33(2):85-98. PubMed ID: 22228214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of human oral plasma concentration-time profiles using preclinical data: comparative evaluation of prediction approaches in early pharmaceutical discovery.
    Van den Bergh A; Sinha V; Gilissen R; Straetemans R; Wuyts K; Morrison D; Bijnens L; Mackie C
    Clin Pharmacokinet; 2011 Aug; 50(8):505-17. PubMed ID: 21740074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Fraction Unbound in Human Plasma from Chemical Structure: Improved Accuracy in the Low Value Ranges.
    Watanabe R; Esaki T; Kawashima H; Natsume-Kitatani Y; Nagao C; Ohashi R; Mizuguchi K
    Mol Pharm; 2018 Nov; 15(11):5302-5311. PubMed ID: 30259749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.
    Peters SA
    Clin Pharmacokinet; 2008; 47(4):245-59. PubMed ID: 18336054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applying machine learning techniques for ADME-Tox prediction: a review.
    Maltarollo VG; Gertrudes JC; Oliveira PR; Honorio KM
    Expert Opin Drug Metab Toxicol; 2015 Feb; 11(2):259-71. PubMed ID: 25440524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.