These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 34758730)
1. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. Chen W; Zhou M; Zhao M; Chen R; Tigabu M; Wu P; Li M; Ma X BMC Plant Biol; 2021 Nov; 21(1):525. PubMed ID: 34758730 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Characterization and Gene Expression Analyses of Malate Dehydrogenase ( Lin Y; Chen W; Yang Q; Zhang Y; Ma X; Li M Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901845 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic Revelation of Phenolic Compounds Involved in Aluminum Toxicity Responses in Roots of Cunninghamia lanceolata (Lamb.) Hook. Ma Z; Lin S Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31652726 [No Abstract] [Full Text] [Related]
4. Effect of arbuscular mycorrhizal symbiosis on growth and biochemical characteristics of Chinese fir ( Tian Y; Xu J; Li L; Farooq TH; Ma X; Wu P PeerJ; 2024; 12():e17138. PubMed ID: 38529308 [TBL] [Abstract][Full Text] [Related]
5. Zhao Y; Huang S; Wei L; Li M; Cai T; Ma X; Shuai P Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445664 [TBL] [Abstract][Full Text] [Related]
6. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in Citrus roots. Yang LT; Jiang HX; Qi YP; Chen LS Mol Biol Rep; 2012 May; 39(5):6353-66. PubMed ID: 22307782 [TBL] [Abstract][Full Text] [Related]
7. De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. Huang HH; Xu LL; Tong ZK; Lin EP; Liu QP; Cheng LJ; Zhu MY BMC Genomics; 2012 Nov; 13():648. PubMed ID: 23171398 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). Wang Z; Chen J; Liu W; Luo Z; Wang P; Zhang Y; Zheng R; Shi J PLoS One; 2013; 8(8):e71562. PubMed ID: 23951189 [TBL] [Abstract][Full Text] [Related]
9. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. Huang S; Zhang L; Cai T; Zhao Y; Liu J; Wu P; Ma X; Shuai P Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956517 [TBL] [Abstract][Full Text] [Related]
11. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering. Hu R; Wu B; Zheng H; Hu D; Wang X; Duan H; Sun Y; Wang J; Zhang Y; Li Y Int J Mol Sci; 2015 Jul; 16(7):15194-219. PubMed ID: 26154763 [TBL] [Abstract][Full Text] [Related]
12. Physiological and proteomic analysis reveals the different responses of Cunninghamia lanceolata seedlings to nitrogen and phosphorus additions. Zhang Y; Han Q; Guo Q; Zhang S J Proteomics; 2016 Sep; 146():109-21. PubMed ID: 27389851 [TBL] [Abstract][Full Text] [Related]
13. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Chen J; Zhao G; Wei Y; Dong Y; Hou L; Jiao R Sci Rep; 2021 Apr; 11(1):9081. PubMed ID: 33907268 [TBL] [Abstract][Full Text] [Related]
14. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
15. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707 [TBL] [Abstract][Full Text] [Related]
16. Root release and metabolism of organic acids in tea plants in response to phosphorus supply. Lin ZH; Chen LS; Chen RB; Zhang FZ; Jiang HX; Tang N; Smith BR J Plant Physiol; 2011 May; 168(7):644-52. PubMed ID: 21315475 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of reference genes and characterization of the MYBs in xylem radial change of Chinese fir stem. Li KP; Li W; Tao GY; Huang KY Sci Rep; 2022 Jan; 12(1):258. PubMed ID: 34997161 [TBL] [Abstract][Full Text] [Related]
19. Cross-Talk between Transcriptome Analysis and Physiological Characterization Identifies the Genes in Response to the Low Phosphorus Stress in Zhao H; Wu Y; Shen L; Hou Q; Wu R; Li Z; Deng L; Wen X Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563283 [TBL] [Abstract][Full Text] [Related]
20. Drought stress introduces growth, physiological traits and ecological stoichiometry changes in two contrasting Cunninghamia lanceolata cultivars planted in continuous-plantation soils. Bian F; Wang Y; Duan B; Wu Z; Zhang Y; Bi Y; Wang A; Zhong H; Du X BMC Plant Biol; 2021 Aug; 21(1):379. PubMed ID: 34407754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]