BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34758743)

  • 1. Employing phylogenetic tree shape statistics to resolve the underlying host population structure.
    Kayondo HW; Ssekagiri A; Nabakooza G; Bbosa N; Ssemwanga D; Kaleebu P; Mwalili S; Mango JM; Leigh Brown AJ; Saenz RA; Galiwango R; Kitayimbwa JM
    BMC Bioinformatics; 2021 Nov; 22(1):546. PubMed ID: 34758743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees.
    Elsayad AM; Nassef AM; Al-Dhaifallah M; Elsayad KA
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Children's Fine Motor Skills With Sensor-Augmented Toys: Machine Learning Approach.
    Brons A; de Schipper A; Mironcika S; Toussaint H; Schouten B; Bakkes S; Kröse B
    J Med Internet Res; 2021 Apr; 23(4):e24237. PubMed ID: 33885371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Congestive Heart Failure by Extracting Multimodal Features and Employing Machine Learning Techniques.
    Hussain L; Awan IA; Aziz W; Saeed S; Ali A; Zeeshan F; Kwak KS
    Biomed Res Int; 2020; 2020():4281243. PubMed ID: 32149106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree.
    Li K; Shi Q; Liu S; Xie Y; Liu J
    Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenies from dynamic networks.
    Metzig C; Ratmann O; Bezemer D; Colijn C
    PLoS Comput Biol; 2019 Feb; 15(2):e1006761. PubMed ID: 30807578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT.
    Hernández Pérez SN; Pérez Reynoso FD; Gutiérrez CAG; Cosío León MLÁ; Ortega Palacios R
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing different algorithms for the course of Alzheimer's disease using machine learning.
    Tang X; Liu J
    Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of heart disease and classifiers' sensitivity analysis.
    Almustafa KM
    BMC Bioinformatics; 2020 Jul; 21(1):278. PubMed ID: 32615980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies.
    Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU
    Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction accident narrative classification: An evaluation of text mining techniques.
    Goh YM; Ubeynarayana CU
    Accid Anal Prev; 2017 Nov; 108():122-130. PubMed ID: 28865927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment.
    Detmer FJ; Lückehe D; Mut F; Slawski M; Hirsch S; Bijlenga P; von Voigt G; Cebral JR
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):141-150. PubMed ID: 31485987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion.
    Duan C; Liu F; Gao S; Zhao J; Niu L; Li N; Liu S; Wang G; Zhou X; Ren Y; Xu W; Liu X
    Clin Neuroradiol; 2022 Mar; 32(1):215-223. PubMed ID: 34156513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
    Zhang Y; Liu S
    Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Sackin's original proposal: the variance of the leaves' depths as a phylogenetic balance index.
    M Coronado T; Mir A; Rosselló F; Rotger L
    BMC Bioinformatics; 2020 Apr; 21(1):154. PubMed ID: 32326884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies.
    Orhan K; Driesen L; Shujaat S; Jacobs R; Chai X
    Biomed Res Int; 2021; 2021():6656773. PubMed ID: 34327235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network science inspires novel tree shape statistics.
    Chindelevitch L; Hayati M; Poon AFY; Colijn C
    PLoS One; 2021; 16(12):e0259877. PubMed ID: 34941890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two results about the Sackin and Colless indices for phylogenetic trees and their shapes.
    Goh G; Fuchs M; Zhang L
    J Math Biol; 2022 Nov; 85(6-7):69. PubMed ID: 36418585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer.
    Rajaguru H; S R SC
    Asian Pac J Cancer Prev; 2019 Dec; 20(12):3777-3781. PubMed ID: 31870121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of English Braille Patterns Using Automated Tools and RICA Based Feature Extraction Methods.
    Shokat S; Riaz R; Rizvi SS; Khan I; Paul A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.