BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34759052)

  • 41. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the intronic splicing silencers flanking FGFR2 exon IIIb.
    Wagner EJ; Baraniak AP; Sessions OM; Mauger D; Moskowitz E; Garcia-Blanco MA
    J Biol Chem; 2005 Apr; 280(14):14017-27. PubMed ID: 15684416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulated splicing of an alternative exon of beta-tropomyosin pre-mRNAs in myogenic cells depends on the strength of pyrimidine-rich intronic enhancer elements.
    Pret AM; Balvay L; Fiszman MY
    DNA Cell Biol; 1999 Sep; 18(9):671-83. PubMed ID: 10492398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein.
    Carstens RP; Wagner EJ; Garcia-Blanco MA
    Mol Cell Biol; 2000 Oct; 20(19):7388-400. PubMed ID: 10982855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Splice site skipping in polyomavirus late pre-mRNA processing.
    Luo Y; Carmichael GG
    J Virol; 1991 Dec; 65(12):6637-44. PubMed ID: 1719232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple cis elements regulate an alternative splicing event at 4.1R pre-mRNA during erythroid differentiation.
    Deguillien M; Huang SC; Morinière M; Dreumont N; Benz EJ; Baklouti F
    Blood; 2001 Dec; 98(13):3809-16. PubMed ID: 11739190
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of Cryptic 3' Splice-Sites by SRSF2 Contributes to Cassette Exon Skipping.
    Moon H; Jang HN; Liu Y; Choi N; Oh J; Ha J; Zheng X; Shen H
    Cells; 2019 Jul; 8(7):. PubMed ID: 31295920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori.
    Suzuki MG; Ohbayashi F; Mita K; Shimada T
    Insect Biochem Mol Biol; 2001 Nov; 31(12):1201-11. PubMed ID: 11583933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of the intronic cryptic 5' splice site depends on its distance to the upstream cassette exon.
    Liu W; Li X; Liao S; Dou K; Zhang Y
    Gene; 2017 Jul; 619():30-36. PubMed ID: 28322992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo splicing of the beta tropomyosin pre-mRNA: a role for branch point and donor site competition.
    Libri D; Balvay L; Fiszman MY
    Mol Cell Biol; 1992 Jul; 12(7):3204-15. PubMed ID: 1620126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of two distinct intron elements involved in alternative splicing of beta-tropomyosin pre-mRNA.
    Helfman DM; Roscigno RF; Mulligan GJ; Finn LA; Weber KS
    Genes Dev; 1990 Jan; 4(1):98-110. PubMed ID: 2307372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Splicing of designer exons informs a biophysical model for exon definition.
    Arias MA; Lubkin A; Chasin LA
    RNA; 2015 Feb; 21(2):213-29. PubMed ID: 25492963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of exon sequences in splice site selection.
    Watakabe A; Tanaka K; Shimura Y
    Genes Dev; 1993 Mar; 7(3):407-18. PubMed ID: 8449402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing.
    Tian B; Pan Z; Lee JY
    Genome Res; 2007 Feb; 17(2):156-65. PubMed ID: 17210931
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe.
    Romfo CM; Alvarez CJ; van Heeckeren WJ; Webb CJ; Wise JA
    Mol Cell Biol; 2000 Nov; 20(21):7955-70. PubMed ID: 11027266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleotides in both donor and acceptor splice sites are responsible for choice in NAGNAG tandem splice sites.
    Hujová P; Souček P; Radová L; Kramárek M; Kováčová T; Freiberger T
    Cell Mol Life Sci; 2021 Nov; 78(21-22):6979-6993. PubMed ID: 34596691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alternative splicing of beta-tropomyosin pre-mRNA: cis-acting elements and cellular factors that block the use of a skeletal muscle exon in nonmuscle cells.
    Guo W; Mulligan GJ; Wormsley S; Helfman DM
    Genes Dev; 1991 Nov; 5(11):2096-107. PubMed ID: 1936995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cleavage and polyadenylation specificity factor 1 (CPSF1) regulates alternative splicing of interleukin 7 receptor (IL7R) exon 6.
    Evsyukova I; Bradrick SS; Gregory SG; Garcia-Blanco MA
    RNA; 2013 Jan; 19(1):103-15. PubMed ID: 23151878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.