These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34759372)

  • 1. Bio-acoustic tracking and localization using heterogeneous, scalable microphone arrays.
    Verreycken E; Simon R; Quirk-Royal B; Daems W; Barber J; Steckel J
    Commun Biol; 2021 Nov; 4(1):1275. PubMed ID: 34759372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory Survey of Endangered Eurasian Bittern Using Microphone Arrays and Robot Audition.
    Matsubayashi S; Nakadai K; Suzuki R; Ura T; Hasebe M; Okuno HG
    Front Robot AI; 2022; 9():854572. PubMed ID: 35462782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.
    Gaudette JE; Kloepper LN; Warnecke M; Simmons JA
    J Acoust Soc Am; 2014 Jan; 135(1):513-20. PubMed ID: 24437791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency soundfield microphone for the analysis of bat biosonar.
    Lee H; Roan MJ; Ming C; Simmons JA; Wang R; Müller R
    J Acoust Soc Am; 2019 Dec; 146(6):4525. PubMed ID: 31893689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-board recordings reveal no jamming avoidance in wild bats.
    Cvikel N; Levin E; Hurme E; Borissov I; Boonman A; Amichai E; Yovel Y
    Proc Biol Sci; 2015 Jan; 282(1798):20142274. PubMed ID: 25429017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Echolocating bats cry out loud to detect their prey.
    Surlykke A; Kalko EK
    PLoS One; 2008 Apr; 3(4):e2036. PubMed ID: 18446226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional sonar beam-width expansion by Japanese house bats (Pipistrellus abramus) during natural foraging.
    Motoi K; Sumiya M; Fujioka E; Hiryu S
    J Acoust Soc Am; 2017 May; 141(5):EL439. PubMed ID: 28599524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic localization of terrestrial wildlife: Current practices and future opportunities.
    Rhinehart TA; Chronister LM; Devlin T; Kitzes J
    Ecol Evol; 2020 Jul; 10(13):6794-6818. PubMed ID: 32724552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CABE: A Cloud-Based Acoustic Beamforming Emulator for FPGA-Based Sound Source Localization.
    Segers L; Vandendriessche J; Vandervelden T; Lapauw BJ; Silva BD; Braeken A; Touhafi A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible control of vocal timing in Carollia perspicillata bats enables escape from acoustic interference.
    Kiai A; Clemens J; Kössl M; Poeppel D; Hechavarría J
    Commun Biol; 2023 Nov; 6(1):1153. PubMed ID: 37957351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The frugivorous bat
    Beetz MJ; Kössl M; Hechavarría JC
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33568443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining acoustic tracking and LiDAR to study bat flight behaviour in three-dimensional space.
    Hermans C; Koblitz JC; Bartholomeus H; Stilz P; Visser ME; Spoelstra K
    Mov Ecol; 2023 Apr; 11(1):25. PubMed ID: 37101233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergent acoustic field of view in echolocating bats.
    Jakobsen L; Ratcliffe JM; Surlykke A
    Nature; 2013 Jan; 493(7430):93-6. PubMed ID: 23172147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A circular microphone array with virtual microphones based on acoustics-informed neural networks.
    Zhao S; Ma F
    J Acoust Soc Am; 2024 Jul; 156(1):405-415. PubMed ID: 39007730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.
    Kloepper LN; Kinniry M
    Sci Rep; 2018 May; 8(1):7779. PubMed ID: 29773821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of echolocation behavior of bats in "echo space" using acoustic simulation.
    Teshima Y; Yamada Y; Tsuchiya T; Heim O; Hiryu S
    BMC Biol; 2022 Mar; 20(1):59. PubMed ID: 35282831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution.
    Avni A; Ahrens J; Geier M; Spors S; Wierstorf H; Rafaely B
    J Acoust Soc Am; 2013 May; 133(5):2711-21. PubMed ID: 23654379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intense echolocation calls from two 'whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae).
    Brinkløv S; Kalko EK; Surlykke A
    J Exp Biol; 2009 Jan; 212(Pt 1):11-20. PubMed ID: 19088206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.