These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 34759664)
1. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy. Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664 [TBL] [Abstract][Full Text] [Related]
2. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [TBL] [Abstract][Full Text] [Related]
3. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
4. Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy. Jain A; Krishnan R; Rogye A; Natarajan S Indian J Ophthalmol; 2021 Nov; 69(11):3150-3154. PubMed ID: 34708760 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence-based screening for diabetic retinopathy at community hospital. He J; Cao T; Xu F; Wang S; Tao H; Wu T; Sun L; Chen J Eye (Lond); 2020 Mar; 34(3):572-576. PubMed ID: 31455902 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425 [TBL] [Abstract][Full Text] [Related]
7. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
8. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. Lupidi M; Danieli L; Fruttini D; Nicolai M; Lassandro N; Chhablani J; Mariotti C Acta Diabetol; 2023 Aug; 60(8):1083-1088. PubMed ID: 37154944 [TBL] [Abstract][Full Text] [Related]
9. Automated diabetic retinopathy detection with two different retinal imaging devices using artificial intelligence: a comparison study. Sarao V; Veritti D; Lanzetta P Graefes Arch Clin Exp Ophthalmol; 2020 Dec; 258(12):2647-2654. PubMed ID: 32936359 [TBL] [Abstract][Full Text] [Related]
10. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
12. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Sosale B; Sosale AR; Murthy H; Sengupta S; Naveenam M Indian J Ophthalmol; 2020 Feb; 68(2):391-395. PubMed ID: 31957735 [TBL] [Abstract][Full Text] [Related]
13. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
14. Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening. Hsieh YT; Chuang LM; Jiang YD; Chang TJ; Yang CM; Yang CH; Chan LW; Kao TY; Chen TC; Lin HC; Tsai CH; Chen M J Formos Med Assoc; 2021 Jan; 120(1 Pt 1):165-171. PubMed ID: 32307321 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence. Grzybowski A; Rao DP; Brona P; Negiloni K; Krzywicki T; Savoy FM Ophthalmic Res; 2023; 66(1):1286-1292. PubMed ID: 37757777 [TBL] [Abstract][Full Text] [Related]
16. Diabetic Retinopathy Telemedicine Outcomes With Artificial Intelligence-Based Image Analysis, Reflex Dilation, and Image Overread. Mehra AA; Softing A; Guner MK; Hodge DO; Barkmeier AJ Am J Ophthalmol; 2022 Dec; 244():125-132. PubMed ID: 35970206 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness and safety of screening for diabetic retinopathy with two nonmydriatic digital images compared with the seven standard stereoscopic photographic fields. Boucher MC; Gresset JA; Angioi K; Olivier S Can J Ophthalmol; 2003 Dec; 38(7):557-68. PubMed ID: 14740797 [TBL] [Abstract][Full Text] [Related]
20. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. Shah A; Clarida W; Amelon R; Hernaez-Ortega MC; Navea A; Morales-Olivas J; Dolz-Marco R; Verbraak F; Jorda PP; van der Heijden AA; Peris Martinez C J Diabetes Sci Technol; 2021 May; 15(3):655-663. PubMed ID: 32174153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]