BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34759832)

  • 1. Quantifying Patient-Specific
    Wang L; Zhu J; Maehara A; Lv R; Qu Y; Zhang X; Guo X; Billiar KL; Chen L; Ma G; Mintz GS; Tang D
    Front Physiol; 2021; 12():721195. PubMed ID: 34759832
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study.
    Guo X; Zhu J; Maehara A; Monoly D; Samady H; Wang L; Billiar KL; Zheng J; Yang C; Mintz GS; Giddens DP; Tang D
    Biomech Model Mechanobiol; 2017 Feb; 16(1):333-344. PubMed ID: 27561649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up.
    Wang Q; Canton G; Guo J; Guo X; Hatsukami TS; Billiar KL; Yuan C; Wu Z; Tang D
    PLoS One; 2017; 12(7):e0180829. PubMed ID: 28715441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using in vivo Cine and 3D multi-contrast MRI to determine human atherosclerotic carotid artery material properties and circumferential shrinkage rate and their impact on stress/strain predictions.
    Liu H; Canton G; Yuan C; Yang C; Billiar K; Teng Z; Hoffman AH; Tang D
    J Biomech Eng; 2012 Jan; 134(1):011008. PubMed ID: 22482663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations.
    Wang Q; Tang D; Wang L; Meahara A; Molony D; Samady H; Zheng J; Mintz GS; Stone GW; Giddens DP
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1383-1397. PubMed ID: 33759037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Residual Stress, Axial Stretch, and Circumferential Shrinkage on Coronary Plaque Stress and Strain Calculations: A Modeling Study Using IVUS-Based Near-Idealized Geometries.
    Wang L; Zhu J; Samady H; Monoly D; Zheng J; Guo X; Maehara A; Yang C; Ma G; Mintz GS; Tang D
    J Biomech Eng; 2017 Jan; 139(1):0145011-01450111. PubMed ID: 27814429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties.
    Fan L; Yao J; Yang C; Tang D; Xu D
    J Biomech Eng; 2015 Aug; 137(8):081005. PubMed ID: 25994130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of patient-specific coronary material properties and their correlations with plaque morphological characteristics: An in vivo IVUS study.
    Wang L; Maehara A; Zhang X; Lv R; Qu Y; Guo X; Zhu J; Wu Z; Billiar KL; Zheng J; Chen L; Ma G; Mintz GS; Tang D
    Int J Cardiol; 2023 Jan; 371():21-27. PubMed ID: 36174818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
    Lv R; Maehara A; Matsumura M; Wang L; Zhang C; Huang M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Front Bioeng Biotechnol; 2021; 9():713525. PubMed ID: 34497800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling and intravascular ultrasound elastography of vulnerable plaques: parameter variation.
    Baldewsing RA; de Korte CL; Schaar JA; Mastik F; van der Steen AF
    Ultrasonics; 2004 Apr; 42(1-9):723-9. PubMed ID: 15047374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Mintz GS; Maehara A; Wang L; Pei X; Li ZY; Tang D
    J Biomech Eng; 2018 Apr; 140(4):0410051-04100512. PubMed ID: 29059332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: An in vivo MRI-based 3D FSI study.
    Teng Z; Canton G; Yuan C; Ferguson M; Yang C; Huang X; Zheng J; Woodard PK; Tang D
    J Biomech Eng; 2010 Mar; 132(3):031007. PubMed ID: 20459195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions.
    Lv R; Wang L; Maehara A; Matsumura M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    J Funct Biomater; 2023 Jan; 14(1):. PubMed ID: 36662088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Zheng J; Bach R; Billiar KL; Mintz GS
    J Biomech; 2018 Feb; 68():43-50. PubMed ID: 29274686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study.
    Fan R; Tang D; Yang C; Zheng J; Bach R; Wang L; Muccigrosso D; Billiar K; Zhu J; Ma G; Maehara A; Mintz GS
    Biomed Eng Online; 2014 Mar; 13(1):32. PubMed ID: 24669780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo IVUS-based 3-D fluid-structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis.
    Yang C; Bach RG; Zheng J; Naqa IE; Woodard PK; Teng Z; Billiar K; Tang D
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2420-8. PubMed ID: 19567341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of residual stress on coronary plaque stress/strain calculations using optical coherence tomography image-based multi-layer models.
    Huang M; Maehara A; Tang D; Zhu J; Wang L; Lv R; Zhu Y; Zhang X; Zhao C; Jia H; Mintz GS
    Front Cardiovasc Med; 2024; 11():1395257. PubMed ID: 38725836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of vulnerable plaque composition by matching the deformation of a parametric plaque model to measured plaque deformation.
    Baldewsing RA; Schaar JA; Mastik F; Oomens CW; van der Steen AF
    IEEE Trans Med Imaging; 2005 Apr; 24(4):514-28. PubMed ID: 15822809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of multilayer and single-layer coronary plaque models on stress/strain calculations based on optical coherence tomography images.
    Huang M; Maehara A; Tang D; Zhu J; Wang L; Lv R; Zhu Y; Zhang X; Matsumura M; Chen L; Ma G; Mintz GS
    Front Physiol; 2023; 14():1251401. PubMed ID: 37608838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravascular Ultrasound Elastography: A Clinician's Tool for Assessing Vulnerability and Material Composition of Plaques.
    Baldewsing RA; Schaar JA; de Korte CL; Mastik F; Serruys PW; van der Steen AF
    Stud Health Technol Inform; 2005; 113():75-96. PubMed ID: 15923738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.