These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34759832)

  • 21. Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.
    Wang L; Tang D; Maehara A; Molony D; Zheng J; Samady H; Wu Z; Lu W; Zhu J; Ma G; Giddens DP; Stone GW; Mintz GS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1269-1280. PubMed ID: 30937650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variability and accuracy of coronary CT angiography including use of iterative reconstruction algorithms for plaque burden assessment as compared with intravascular ultrasound-an ex vivo study.
    Stolzmann P; Schlett CL; Maurovich-Horvat P; Maehara A; Ma S; Scheffel H; Engel LC; Károlyi M; Mintz GS; Hoffmann U
    Eur Radiol; 2012 Oct; 22(10):2067-75. PubMed ID: 22622346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Multimodality Image-Based Fluid-Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Matsumura M; Mintz GS; Maehara A; Wang L; Tang D
    J Biomech Eng; 2019 Sep; 141(9):0910031-9. PubMed ID: 31141591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.
    Tang D; Yang C; Kobayashi S; Zheng J; Woodard PK; Teng Z; Billiar K; Bach R; Ku DN
    J Biomech Eng; 2009 Jun; 131(6):061010. PubMed ID: 19449964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IVUS-based computational modeling and planar biaxial artery material properties for human coronary plaque vulnerability assessment.
    Liu H; Cai M; Yang C; Zheng J; Bach R; Kural MH; Billiar KL; Muccigrosso D; Lu D; Tang D
    Mol Cell Biomech; 2012 Mar; 9(1):77-93. PubMed ID: 22428362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intravascular ultrasound elastography: an overview.
    de Korte CL; van der Steen AF
    Ultrasonics; 2002 May; 40(1-8):859-65. PubMed ID: 12160059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: a 3D FSI study based on ex vivo MRI of coronary plaques.
    Huang X; Yang C; Zheng J; Bach R; Muccigrosso D; Woodard PK; Tang D
    J Biomech; 2014 Jan; 47(2):432-7. PubMed ID: 24345380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-specific artery shrinkage and 3D zero-stress state in multi-component 3D FSI models for carotid atherosclerotic plaques based on in vivo MRI data.
    Huang X; Yang C; Yuan C; Liu F; Canton G; Zheng J; Woodard PK; Sicard GA; Tang D
    Mol Cell Biomech; 2009 Jun; 6(2):121-34. PubMed ID: 19444328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study.
    Lv R; Maehara A; Matsumura M; Wang L; Wang Q; Zhang C; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Biomed Eng Online; 2020 Nov; 19(1):90. PubMed ID: 33256759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis.
    Wang L; Wu Z; Yang C; Zheng J; Bach R; Muccigrosso D; Billiar K; Maehara A; Mintz GS; Tang D
    Ann Biomed Eng; 2015 Jan; 43(1):107-21. PubMed ID: 25245219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-patient Study.
    Wang L; Zheng J; Maehara A; Yang C; Billiar KL; Wu Z; Bach R; Muccigrosso D; Mintz GS; Tang D
    PLoS Comput Biol; 2015 Dec; 11(12):e1004652. PubMed ID: 26650721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations.
    Fan L; Yao J; Yang C; Xu D; Tang D
    Mol Cell Biomech; 2016; 13(1):33-55. PubMed ID: 29399004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study.
    Le Floc'h S; Cloutier G; Finet G; Tracqui P; Pettigrew RI; Ohayon J
    Phys Med Biol; 2010 Oct; 55(19):5701-21. PubMed ID: 20826899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study.
    Voros S; Rinehart S; Qian Z; Vazquez G; Anderson H; Murrieta L; Wilmer C; Carlson H; Taylor K; Ballard W; Karmpaliotis D; Kalynych A; Brown C
    JACC Cardiovasc Interv; 2011 Feb; 4(2):198-208. PubMed ID: 21349459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression.
    Timmins LH; Suo J; Eshtehardi P; Molony DS; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    Int J Cardiovasc Imaging; 2016 Sep; 32(9):1327-1336. PubMed ID: 27229349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D MRI-based multicomponent thin layer structure only plaque models for atherosclerotic plaques.
    Huang X; Yang C; Zheng J; Bach R; Muccigrosso D; Woodard PK; Tang D
    J Biomech; 2016 Sep; 49(13):2726-2733. PubMed ID: 27344199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient specific characterization of artery and plaque material properties in peripheral artery disease.
    Noble C; Carlson KD; Neumann E; Dragomir-Daescu D; Erdemir A; Lerman A; Young M
    J Mech Behav Biomed Mater; 2020 Jan; 101():103453. PubMed ID: 31585351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Coronary Stenosis Progression Using Plaque Fatigue From IVUS-Based Thin-Slice Models: A Machine Learning Random Forest Approach.
    Guo X; Maehara A; Yang M; Wang L; Zheng J; Samady H; Mintz GS; Giddens DP; Tang D
    Front Physiol; 2022; 13():912447. PubMed ID: 35620594
    [No Abstract]   [Full Text] [Related]  

  • 39. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis.
    Pundziute G; Schuijf JD; Jukema JW; Decramer I; Sarno G; Vanhoenacker PK; Reiber JH; Schalij MJ; Wijns W; Bax JJ
    JACC Cardiovasc Interv; 2008 Apr; 1(2):176-82. PubMed ID: 19463297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the potential of the lagrangian estimator for endovascular ultrasound elastography: in vivo human coronary artery study.
    Maurice RL; Fromageau J; Brusseau E; Finet G; Rioufol G; Cloutier G
    Ultrasound Med Biol; 2007 Aug; 33(8):1199-205. PubMed ID: 17466446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.