These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34759918)

  • 1. Unlocking the Role of Exercise on CD4+ T Cell Plasticity.
    Goldsmith CD; Donovan T; Vlahovich N; Pyne DB
    Front Immunol; 2021; 12():729366. PubMed ID: 34759918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial mass governs the extent of human T cell senescence.
    Callender LA; Carroll EC; Bober EA; Akbar AN; Solito E; Henson SM
    Aging Cell; 2020 Feb; 19(2):e13067. PubMed ID: 31788930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells.
    Lu J; Liang Y; Meng H; Zhang A; Zhao J; Zhang C
    Front Immunol; 2021; 12():728783. PubMed ID: 34421930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetics of T cell aging.
    Goronzy JJ; Hu B; Kim C; Jadhav RR; Weyand CM
    J Leukoc Biol; 2018 Oct; 104(4):691-699. PubMed ID: 29947427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition.
    Gomez-Pinilla F; Thapak P
    Free Radic Biol Med; 2024 Aug; 220():43-55. PubMed ID: 38677488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic regulation in cell senescence.
    Cheng LQ; Zhang ZQ; Chen HZ; Liu DP
    J Mol Med (Berl); 2017 Dec; 95(12):1257-1268. PubMed ID: 28887637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation.
    Gehrmann U; Burbage M; Zueva E; Goudot C; Esnault C; Ye M; Carpier JM; Burgdorf N; Hoyler T; Suarez G; Joannas L; Heurtebise-Chrétien S; Durand S; Panes R; Bellemare-Pelletier A; Sáez PJ; Aprahamian F; Lefevre D; Adoue V; Zine El Aabidine A; Muhammad Ahmad M; Hivroz C; Joffre O; Cammas F; Kroemer G; Gagnon E; Andrau JC; Amigorena S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25839-25849. PubMed ID: 31776254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic networks driving T cell identity and plasticity during immunosenescence.
    Rodriguez RM; Saiz ML; Suarez-Álvarez B; López-Larrea C
    Trends Genet; 2022 Feb; 38(2):120-123. PubMed ID: 34561103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging of the Immune System. Mechanisms and Therapeutic Targets.
    Weyand CM; Goronzy JJ
    Ann Am Thorac Soc; 2016 Dec; 13 Suppl 5(Suppl 5):S422-S428. PubMed ID: 28005419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria and Epigenetics - Crosstalk in Homeostasis and Stress.
    Matilainen O; Quirós PM; Auwerx J
    Trends Cell Biol; 2017 Jun; 27(6):453-463. PubMed ID: 28274652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic characteristics of aged CD4
    Suarez-Álvarez B; Rodríguez RM; Schlangen K; Raneros AB; Márquez-Kisinousky L; Fernández AF; Díaz-Corte C; Aransay AM; López-Larrea C
    Aging Cell; 2017 Apr; 16(2):293-303. PubMed ID: 28026094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Reprogramming and Cellular Plasticity through Histone Exchange and Histone Variant Incorporation.
    Gaume X; Torres-Padilla ME
    Cold Spring Harb Symp Quant Biol; 2015; 80():165-75. PubMed ID: 26582788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic factors in aging and longevity.
    Gravina S; Vijg J
    Pflugers Arch; 2010 Jan; 459(2):247-58. PubMed ID: 19768466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hallmarks of T cell aging.
    Mittelbrunn M; Kroemer G
    Nat Immunol; 2021 Jun; 22(6):687-698. PubMed ID: 33986548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients.
    Xiang F; Chen R; Cao X; Shen B; Chen X; Ding X; Zou J
    BMC Nephrol; 2020 Jul; 21(1):271. PubMed ID: 32660510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial superoxide disrupts the metabolic and epigenetic landscape of CD4
    Moshfegh CM; Collins CW; Gunda V; Vasanthakumar A; Cao JZ; Singh PK; Godley LA; Case AJ
    Redox Biol; 2019 Oct; 27():101141. PubMed ID: 30819616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-cell immunosenescence: lessons learned from mouse models of aging.
    Maue AC; Yager EJ; Swain SL; Woodland DL; Blackman MA; Haynes L
    Trends Immunol; 2009 Jul; 30(7):301-5. PubMed ID: 19541537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape.
    Salminen A; Haapasalo A; Kauppinen A; Kaarniranta K; Soininen H; Hiltunen M
    Prog Neurobiol; 2015 Aug; 131():1-20. PubMed ID: 26001589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess body mass is associated with T cell differentiation indicative of immune ageing in children.
    Spielmann G; Johnston CA; O'Connor DP; Foreyt JP; Simpson RJ
    Clin Exp Immunol; 2014 May; 176(2):246-54. PubMed ID: 24401077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signals from CD28 induce stable epigenetic modification of the IL-2 promoter.
    Thomas RM; Gao L; Wells AD
    J Immunol; 2005 Apr; 174(8):4639-46. PubMed ID: 15814687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.