These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34760189)

  • 1. Artificial transmembrane signal transduction mediated by dynamic covalent chemistry.
    Bravin C; Duindam N; Hunter CA
    Chem Sci; 2021 Nov; 12(42):14059-14064. PubMed ID: 34760189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template effects of vesicles in dynamic covalent chemistry.
    Bravin C; Hunter CA
    Chem Sci; 2020 Jul; 11(34):9122-9125. PubMed ID: 34123161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the mechanism of thermally driven thiol-Michael dynamic covalent chemistry.
    Zhang B; Chakma P; Shulman MP; Ke J; Digby ZA; Konkolewicz D
    Org Biomol Chem; 2018 Apr; 16(15):2725-2734. PubMed ID: 29589856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and Thermodynamics of Reversible Thiol Additions to Mono- and Diactivated Michael Acceptors: Implications for the Design of Drugs That Bind Covalently to Cysteines.
    Krenske EH; Petter RC; Houk KN
    J Org Chem; 2016 Dec; 81(23):11726-11733. PubMed ID: 27934455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation and Demonstration of Catalyst/Initiator-Driven Selectivity in Thiol-Michael Reactions.
    Frayne SH; Murthy RR; Northrop BH
    J Org Chem; 2017 Aug; 82(15):7946-7956. PubMed ID: 28695735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane signal transduction by cofactor transport.
    Kocsis I; Ding Y; Williams NH; Hunter CA
    Chem Sci; 2021 Sep; 12(37):12377-12382. PubMed ID: 34603667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Observation of Thiol Michael Addition to a Reversible Covalent Drug in a Crystalline Sponge.
    Duplan V; Hoshino M; Li W; Honda T; Fujita M
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):4919-23. PubMed ID: 26970084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. It's a Trap: Thiol-Michael Chemistry on a DASA Photoswitch.
    Alves J; Wiedbrauk S; Gräfe D; Walden SL; Blinco JP; Barner-Kowollik C
    Chemistry; 2020 Jan; 26(4):809-813. PubMed ID: 31797435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triggered Release from Lipid Bilayer Vesicles by an Artificial Transmembrane Signal Transduction System.
    Langton MJ; Scriven LM; Williams NH; Hunter CA
    J Am Chem Soc; 2017 Nov; 139(44):15768-15773. PubMed ID: 28876061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation of the Reaction of Michael Acceptors with Biologically Important Nucleophiles.
    Hearn BR; Fontaine SD; Schneider EL; Kraemer Y; Ashley GW; Santi DV
    Bioconjug Chem; 2021 Apr; 32(4):794-800. PubMed ID: 33822591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationships for inhibition of papain by peptide Michael acceptors.
    Liu S; Hanzlik RP
    J Med Chem; 1992 Mar; 35(6):1067-75. PubMed ID: 1552501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Covalent Michael Acceptors to Penetrate Cells: Thiol-Mediated Uptake with Tetrel-Centered Exchange Cascades, Assisted by Halogen-Bonding Switches.
    Shybeka I; Maynard JRJ; Saidjalolov S; Moreau D; Sakai N; Matile S
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213433. PubMed ID: 36272154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Synthetic Vesicle-to-Vesicle Communication System.
    Ding Y; Williams NH; Hunter CA
    J Am Chem Soc; 2019 Nov; 141(44):17847-17853. PubMed ID: 31642667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of XPO-1 Mediated Nuclear Export through the Michael-Acceptor Character of Chalcones.
    Gargantilla M; López-Fernández J; Camarasa MJ; Persoons L; Daelemans D; Priego EM; Pérez-Pérez MJ
    Pharmaceuticals (Basel); 2021 Nov; 14(11):. PubMed ID: 34832913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Equilibrium of Dynamic Thia-Michael Reactions through Heterocyclic Design.
    Crolais AE; Dolinski ND; Boynton NR; Radhakrishnan JM; Snyder SA; Rowan SJ
    J Am Chem Soc; 2023 Jul; 145(26):14427-14434. PubMed ID: 37350527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition-Controlled Membrane Translocation for Signal Transduction across Lipid Bilayers.
    Langton MJ; Williams NH; Hunter CA
    J Am Chem Soc; 2017 May; 139(18):6461-6466. PubMed ID: 28462993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic reaction-induced phase separation in tunable, adaptive covalent networks.
    Herbert KM; Getty PT; Dolinski ND; Hertzog JE; de Jong D; Lettow JH; Romulus J; Onorato JW; Foster EM; Rowan SJ
    Chem Sci; 2020 May; 11(19):5028-5036. PubMed ID: 34122959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in the evaluation of thiol-reactive inhibitors of human protein disulfide Isomerase.
    Foster CK; Thorpe C
    Free Radic Biol Med; 2017 Jul; 108():741-749. PubMed ID: 28465261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amplified assay for thiols based on reactivation of papain.
    Singh R; Blättler WA; Collinson AR
    Anal Biochem; 1993 Aug; 213(1):49-56. PubMed ID: 8238881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid.
    Turell L; Vitturi DA; Coitiño EL; Lebrato L; Möller MN; Sagasti C; Salvatore SR; Woodcock SR; Alvarez B; Schopfer FJ
    J Biol Chem; 2017 Jan; 292(4):1145-1159. PubMed ID: 27923813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.