These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34760335)

  • 41. Genome-Wide Characterization of RNA Editing Sites in Primary Gastric Adenocarcinoma through RNA-seq Data Analysis.
    Behroozi J; Shahbazi S; Bakhtiarizadeh MR; Mahmoodzadeh H
    Int J Genomics; 2020; 2020():6493963. PubMed ID: 33415135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unbiased Identification of trans Regulators of ADAR and A-to-I RNA Editing.
    Freund EC; Sapiro AL; Li Q; Linder S; Moresco JJ; Yates JR; Li JB
    Cell Rep; 2020 May; 31(7):107656. PubMed ID: 32433965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical and Transcriptome-Wide Identification of A-to-I RNA Editing Sites by ICE-Seq.
    Okada S; Sakurai M; Ueda H; Suzuki T
    Methods Enzymol; 2015; 560():331-53. PubMed ID: 26253977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference.
    Wang Y; Liang H
    Bioessays; 2018 Feb; 40(2):. PubMed ID: 29280160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development.
    Behm M; Wahlstedt H; Widmark A; Eriksson M; Öhman M
    J Cell Sci; 2017 Feb; 130(4):745-753. PubMed ID: 28082424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative genomic and bioinformatic approaches for the identification of new adenosine-to-inosine substrates.
    Sixsmith J; Reenan RA
    Methods Enzymol; 2007; 424():245-64. PubMed ID: 17662844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain.
    Kim JI; Nakahama T; Yamasaki R; Costa Cruz PH; Vongpipatana T; Inoue M; Kanou N; Xing Y; Todo H; Shibuya T; Kato Y; Kawahara Y
    PLoS Genet; 2021 May; 17(5):e1009516. PubMed ID: 33983932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ADAR1-Dependent RNA Editing Promotes MET and iPSC Reprogramming by Alleviating ER Stress.
    Guallar D; Fuentes-Iglesias A; Souto Y; Ameneiro C; Freire-Agulleiro O; Pardavila JA; Escudero A; Garcia-Outeiral V; Moreira T; Saenz C; Xiong H; Liu D; Xiao S; Hou Y; Wu K; Torrecilla D; Hartner JC; Blanco MG; Lee LJ; López M; Walkley CR; Wang J; Fidalgo M
    Cell Stem Cell; 2020 Aug; 27(2):300-314.e11. PubMed ID: 32396862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide identification and analysis of A-to-I RNA editing events in bovine by transcriptome sequencing.
    Bakhtiarizadeh MR; Salehi A; Rivera RM
    PLoS One; 2018; 13(2):e0193316. PubMed ID: 29470549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlling the Editor: The Many Roles of RNA-Binding Proteins in Regulating A-to-I RNA Editing.
    Washburn MC; Hundley HA
    Adv Exp Med Biol; 2016; 907():189-213. PubMed ID: 27256387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle.
    Yang Y; Zhu M; Fan X; Yao Y; Yan J; Tang Y; Liu S; Li K; Tang Z
    DNA Res; 2019 Jun; 26(3):261-272. PubMed ID: 31231762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway.
    Walkley CR; Kile BT
    Cell Death Dis; 2019 Dec; 10(12):913. PubMed ID: 31801951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics.
    Nakano M; Nakajima M
    Pharmacol Ther; 2018 Jan; 181():13-21. PubMed ID: 28716651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large-scale prediction of ADAR-mediated effective human A-to-I RNA editing.
    Yao L; Wang H; Song Y; Dai Z; Yu H; Yin M; Wang D; Yang X; Wang J; Wang T; Cao N; Zhu J; Shen X; Song G; Zhao Y
    Brief Bioinform; 2019 Jan; 20(1):102-109. PubMed ID: 28968662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome.
    Sakurai M; Yano T; Kawabata H; Ueda H; Suzuki T
    Nat Chem Biol; 2010 Oct; 6(10):733-40. PubMed ID: 20835228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA editing enzyme ADAR1 governs the circadian expression of P-glycoprotein in human renal cells by regulating alternative splicing of the ABCB1 gene.
    Omata Y; Yamauchi T; Tsuruta A; Matsunaga N; Koyanagi S; Ohdo S
    J Biol Chem; 2021; 296():100601. PubMed ID: 33781748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic regulation of RNA editing in human brain development and disease.
    Hwang T; Park CK; Leung AK; Gao Y; Hyde TM; Kleinman JE; Rajpurohit A; Tao R; Shin JH; Weinberger DR
    Nat Neurosci; 2016 Aug; 19(8):1093-9. PubMed ID: 27348216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A-to-I RNA editing as a tuner of noncoding RNAs in cancer.
    Liao Y; Jung SH; Kim T
    Cancer Lett; 2020 Dec; 494():88-93. PubMed ID: 32822814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric Cancer.
    Cho CJ; Jung J; Jiang L; Lee EJ; Kim DS; Kim BS; Kim HS; Jung HY; Song HJ; Hwang SW; Park Y; Jung MK; Pack CG; Myung SJ; Chang S
    Dig Dis Sci; 2018 Jul; 63(7):1835-1850. PubMed ID: 29691780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ADAR2 A-->I editing: site selectivity and editing efficiency are separate events.
    Källman AM; Sahlin M; Ohman M
    Nucleic Acids Res; 2003 Aug; 31(16):4874-81. PubMed ID: 12907730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.