These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34760868)

  • 21. Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production.
    Huang W; Su C; Zhu C; Bo T; Zuo S; Zhou W; Ren Y; Zhang Y; Zhang J; Rueping M; Zhang H
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304634. PubMed ID: 37076750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.
    Ge MZ; Cao CY; Li SH; Tang YX; Wang LN; Qi N; Huang JY; Zhang KQ; Al-Deyab SS; Lai YK
    Nanoscale; 2016 Mar; 8(9):5226-34. PubMed ID: 26878901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonadiabatic Dynamics of Photocatalytic Water Splitting on A Polymeric Semiconductor.
    You P; Lian C; Chen D; Xu J; Zhang C; Meng S; Wang E
    Nano Lett; 2021 Aug; 21(15):6449-6455. PubMed ID: 34279962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation.
    Cho J; Sheng A; Suwandaratne N; Wangoh L; Andrews JL; Zhang P; Piper LFJ; Watson DF; Banerjee S
    Acc Chem Res; 2019 Mar; 52(3):645-655. PubMed ID: 30543407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-assisted water splitting using two sides of the same SrTiO₃ single-crystal substrate: conversion of visible light to chemical energy.
    Zhong Y; Ueno K; Mori Y; Shi X; Oshikiri T; Murakoshi K; Inoue H; Misawa H
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10350-4. PubMed ID: 24988943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling the Origin of Co
    Guo X; Liu X; Wang M; Yan J; Chen Y; Liu S
    Small; 2023 May; 19(19):e2206695. PubMed ID: 36775877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes.
    Ueno K; Oshikiri T; Misawa H
    Chemphyschem; 2016 Jan; 17(2):199-215. PubMed ID: 26593450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-atom nickel terminating sp
    Li Y; Wang Y; Dong CL; Huang YC; Chen J; Zhang Z; Meng F; Zhang Q; Huangfu Y; Zhao D; Gu L; Shen S
    Chem Sci; 2021 Jan; 12(10):3633-3643. PubMed ID: 34163637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-Activity Relationship of Defective Metal-Based Photocatalysts for Water Splitting: Experimental and Theoretical Perspectives.
    Zhang YC; Afzal N; Pan L; Zhang X; Zou JJ
    Adv Sci (Weinh); 2019 May; 6(10):1900053. PubMed ID: 31131201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hot Electrons in TiO
    Manuel AP; Shankar K
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D-2D Bi
    Yuan L; Weng B; Colmenares JC; Sun Y; Xu YJ
    Small; 2017 Dec; 13(48):. PubMed ID: 29044969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mediator- and co-catalyst-free direct Z-scheme composites of Bi
    Rauf A; Ma M; Kim S; Sher Shah MSA; Chung CH; Park JH; Yoo PJ
    Nanoscale; 2018 Feb; 10(6):3026-3036. PubMed ID: 29376177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.
    Wang Z; Li C; Domen K
    Chem Soc Rev; 2019 Apr; 48(7):2109-2125. PubMed ID: 30328438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water Splitting by C
    Hou GL; Yang T; Li M; Vanbuel J; Lushchikova OV; Ferrari P; Bakker JM; Janssens E
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27095-27101. PubMed ID: 34610202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.
    Chen M; Gu J; Sun C; Zhao Y; Zhang R; You X; Liu Q; Zhang W; Su Y; Su H; Zhang D
    ACS Nano; 2016 Jul; 10(7):6693-701. PubMed ID: 27351779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting.
    Wang L; Zhang Y; Chen L; Xu H; Xiong Y
    Adv Mater; 2018 Nov; 30(48):e1801955. PubMed ID: 30033628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures.
    Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP
    ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.