These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34760868)

  • 61. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations.
    Weissker HC; López-Lozano X
    Phys Chem Chem Phys; 2015 Nov; 17(42):28379-86. PubMed ID: 26104995
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intermolecular Forces Dictate Vibrational Energy Transfer in Plasmonic-Molecule Systems.
    Yu Z; Frontiera RR
    ACS Nano; 2022 Jan; 16(1):847-854. PubMed ID: 34936347
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spatiotemporal imaging of charge transfer in photocatalyst particles.
    Chen R; Ren Z; Liang Y; Zhang G; Dittrich T; Liu R; Liu Y; Zhao Y; Pang S; An H; Ni C; Zhou P; Han K; Fan F; Li C
    Nature; 2022 Oct; 610(7931):296-301. PubMed ID: 36224420
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling of laser-pulse induced small water cluster-(H
    Li X; Cheng X; Zhang H
    Phys Chem Chem Phys; 2022 Jul; 24(29):17623-17631. PubMed ID: 35833491
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.
    Ling C; Shi L; Ouyang Y; Zeng XC; Wang J
    Nano Lett; 2017 Aug; 17(8):5133-5139. PubMed ID: 28745889
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carbon Nitride Co-catalyst Activation Using N-Doped Carbon with Enhanced Photocatalytic H
    Wang J; Zhou Q; Shen Y; Chen X; Liu S; Zhang Y
    Langmuir; 2019 Sep; 35(38):12366-12373. PubMed ID: 31464446
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis.
    Boerigter C; Campana R; Morabito M; Linic S
    Nat Commun; 2016 Jan; 7():10545. PubMed ID: 26817619
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting.
    Zhang P; Wang T; Gong J
    Adv Mater; 2015 Sep; 27(36):5328-42. PubMed ID: 26265309
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion.
    Fredin LA; Persson P
    J Chem Phys; 2016 Sep; 145(10):104310. PubMed ID: 27634263
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Charge-transfer mechanism in Pt/KTa(Zr)O(3) photocatalysts modified with porphyrinoids for water splitting.
    Hagiwara H; Inoue T; Kaneko K; Ishihara T
    Chemistry; 2009 Nov; 15(46):12862-70. PubMed ID: 19834939
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interlayer Photoelectron Transfer Boosted by Bridged Ru
    Li G; Duan H; Cheng W; Wang C; Hu W; Sun Z; Tan H; Li N; Ji Q; Wang Y; Lu Y; Yan W
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45561-45567. PubMed ID: 31713409
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient photoelectrochemical water splitting on ultrasmall defect-rich TaO
    Srivastava S; Thomas JP; Heinig N; Abd-Ellah M; Rahman MA; Leung KT
    Nanoscale; 2017 Oct; 9(38):14395-14404. PubMed ID: 28819665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.
    Long R; Prezhdo OV
    J Am Chem Soc; 2014 Mar; 136(11):4343-54. PubMed ID: 24568726
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plasmon-Enhanced Multicarrier Photocatalysis.
    Shaik F; Peer I; Jain PK; Amirav L
    Nano Lett; 2018 Jul; 18(7):4370-4376. PubMed ID: 29932665
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Strategic modulation of energy transfer in Au-TiO
    Zhu M; Wang Y; Deng YH; Peng X; Wang X; Yuan H; Yang ZJ; Wang Y; Wang H
    Nanoscale; 2020 Apr; 12(13):7035-7044. PubMed ID: 32207505
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances.
    Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plasmon-enhanced hydrogen evolution reaction on a Ag-branched-nanowire/Pt nanoparticle/AgCl nanocomposite.
    Nigusie AL; Ujihara M
    Phys Chem Chem Phys; 2021 Aug; 23(30):16366-16375. PubMed ID: 34318807
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Plasmon-Induced Charge Transfer: Challenges and Outlook.
    Ratchford DC
    ACS Nano; 2019 Dec; 13(12):13610-13614. PubMed ID: 31809010
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanistic Studies of Plasmon Chemistry on Metal Catalysts.
    Kazuma E; Kim Y
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4800-4808. PubMed ID: 30375136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.