These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34761162)

  • 1. Significance of cutting plane in liquid metal embrittlement severity quantification.
    DiGiovanni C; He L; Hawkins C; Zhou NY; Biro E
    SN Appl Sci; 2021; 3(6):620. PubMed ID: 34761162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The High-Cycle Tensile-Shear Fatigue Properties and Failure Mechanism of Resistance Spot-Welded Advanced High-Strength Steel with a Zn Coating.
    Sun Y; Zhou J; Hu R; Pan H; Ding K; Lei M; Gao Y
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Metal Embrittlement of Advanced High Strength Steel: Experiments and Damage Modeling.
    Prabitz KM; Asadzadeh MZ; Pichler M; Antretter T; Beal C; Schubert H; Hilpert B; Gruber M; Sierlinger R; Ecker W
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgranular Cracking in a Liquid Zn Embrittled High Strength Steel.
    Bhattacharya D; Cho L; Van der Aa E; Ghassemi-Armaki H; Pichler A; Findley KO; Speer JG
    Scr Mater; 2020; 175():. PubMed ID: 32165855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solidification Crack Evolution in High-Strength Steel Welding Using the Extended Finite Element Method.
    Chen Z; Liu J; Qiu H
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validated Multi-Physical Finite Element Modelling of the Spot Welding Process of the Advanced High Strength Steel DP1200HD.
    Prabitz K; Pichler M; Antretter T; Schubert H; Hilpert B; Gruber M; Sierlinger R; Ecker W
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solidification Cracking Assessment of LTT Filler Materials by Means of Varestraint Testing and µCT.
    Vollert F; Thomas M; Kromm A; Gibmeier J
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Martensitic Steel after Welding with Micro-Jet Cooling in Microstructural and Mechanical Investigations.
    Szczucka-Lasota B; Węgrzyn T; Szymczak T; Jurek A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Exploratory Study on Resistance Spot Welding of Titanium Alloy Ti-6Al-4V.
    Fatmahardi I; Mustapha M; Ahmad A; Derman MN; Lenggo Ginta T; Taufiqurrahman I
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic weak interaction criterion for the specificity of liquid metal embrittlement.
    Yamaguchi M; Tsuru T; Itakura M; Abe E
    Sci Rep; 2022 Jul; 12(1):10886. PubMed ID: 35788137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural Investigation of LME Crack Initiated in Ferritic/Martensitic Steel T91 Loaded in Liquid Lead-Bismuth Eutectic at 300 °C.
    Halodová P; Lorinčík J; Hojná A
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30583552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of Weld to S960MC High Strength Steel from Joining Process at Micro-Jet Cooling with Critical Parameters under Static and Fatigue Loading.
    Szymczak T; Szczucka-Lasota B; Węgrzyn T; Łazarz B; Jurek A
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34063927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Restraint Conditions on Welding Residual Stresses in H-Type Cracking Test Specimens.
    Sun J; Hensel J; Nitschke-Pagel T; Dilger K
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cracking in laser welds of dental Ni-Cr alloys. Effect of alloy composition].
    Matsui Y
    Nihon Hotetsu Shika Gakkai Zasshi; 1990 Jun; 34(3):531-44. PubMed ID: 1983736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spot-Weld Service Life Estimate Based on Application of the Interfacial Crack Concept.
    Nikolić RR; Djoković JM; Hadzima B; Ulewicz R
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of High-Manganese Steel to High-Temperature Cracking.
    Fojt-Dymara G; Opiela M; Borek W
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Resistance Spot Welding Processes of Metal-Plastic Composites.
    Kustroń P; Korzeniowski M; Piwowarczyk T; Sokołowski P
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Test Method for Evaluation of Solidification Cracking Susceptibility of Stainless Steel during Laser Welding.
    Wang W; Xiong L; Wang D; Ma Q; Hu Y; Hu G; Lei Y
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Prediction for Resistance Spot Welding Deformation Using Inherent Strain Method and Nugget Model.
    Chino T; Kunugi A; Kawashima T; Watanabe G; Can C; Ma N
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.
    Araque O; Arzola N; Hernández E
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29649117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.