BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34761463)

  • 1. Sleep-spindle frequency: Overnight dynamics, afternoon nap effects, and possible circadian modulation.
    Bódizs R; Horváth CG; Szalárdy O; Ujma PP; Simor P; Gombos F; Kovács I; Genzel L; Dresler M
    J Sleep Res; 2022 Jun; 31(3):e13514. PubMed ID: 34761463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Young women with major depression live on higher homeostatic sleep pressure than healthy controls.
    Frey S; Birchler-Pedross A; Hofstetter M; Brunner P; Götz T; Münch M; Blatter K; Knoblauch V; Wirz-Justice A; Cajochen C
    Chronobiol Int; 2012 Apr; 29(3):278-94. PubMed ID: 22390241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nap sleep spindle correlates of intelligence.
    Ujma PP; Bódizs R; Gombos F; Stintzing J; Konrad BN; Genzel L; Steiger A; Dresler M
    Sci Rep; 2015 Nov; 5():17159. PubMed ID: 26607963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in the circadian modulation of sleep-spindle frequency during nap sleep.
    Knoblauch V; Münch M; Blatter K; Martens WL; Schröder C; Schnitzler C; Wirz-Justice A; Cajochen C
    Sleep; 2005 Sep; 28(9):1093-101. PubMed ID: 16268378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in the circadian and homeostatic regulation of human sleep.
    Cajochen C; Münch M; Knoblauch V; Blatter K; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):461-74. PubMed ID: 16687319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional differences in the circadian modulation of human sleep spindle characteristics.
    Knoblauch V; Martens W; Wirz-Justice A; Kräuchi K; Cajochen C
    Eur J Neurosci; 2003 Jul; 18(1):155-63. PubMed ID: 12859349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG sleep spectra in older adults across all circadian phases during NREM sleep.
    Münch M; Silva EJ; Ronda JM; Czeisler CA; Duffy JF
    Sleep; 2010 Mar; 33(3):389-401. PubMed ID: 20337198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics.
    Bódizs R; Schneider B; Ujma PP; Horváth CG; Dresler M; Rosenblum Y
    Prog Neurobiol; 2024 Mar; 234():102589. PubMed ID: 38458483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuated amplitude of circadian and sleep-dependent modulation of electroencephalographic sleep spindle characteristics in elderly human subjects.
    Wei HG; Riel E; Czeisler CA; Dijk DJ
    Neurosci Lett; 1999 Jan; 260(1):29-32. PubMed ID: 10027692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spindle frequencies in sleep EEG show U-shape within first four NREM sleep episodes.
    Himanen SL; Virkkala J; Huhtala H; Hasan J
    J Sleep Res; 2002 Mar; 11(1):35-42. PubMed ID: 11869425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat.
    Yasenkov R; Deboer T
    Neuroscience; 2011 Apr; 180():212-21. PubMed ID: 21303684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeostatic behavior of fast Fourier transform power in very low frequency non-rapid eye movement human electroencephalogram.
    Campbell IG; Higgins LM; Darchia N; Feinberg I
    Neuroscience; 2006 Jul; 140(4):1395-9. PubMed ID: 16631313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal Analysis of Sleep Spindle Maturation from Childhood through Late Adolescence.
    Zhang ZY; Campbell IG; Dhayagude P; Espino HC; Feinberg I
    J Neurosci; 2021 May; 41(19):4253-4261. PubMed ID: 33785642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The individual adjustment method of sleep spindle analysis: methodological improvements and roots in the fingerprint paradigm.
    Bódizs R; Körmendi J; Rigó P; Lázár AS
    J Neurosci Methods; 2009 Mar; 178(1):205-13. PubMed ID: 19061915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polygenic impact of morningness on the overnight dynamics of sleep spindle amplitude.
    Pesonen AK; Merikanto I; Halonen R; Ujma P; Makkonen T; Räikkönen K; Lahti J; Kuula L
    Genes Brain Behav; 2020 Apr; 19(4):e12641. PubMed ID: 31925898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity.
    Ayoub A; Aumann D; Hörschelmann A; Kouchekmanesch A; Paul P; Born J; Marshall L
    Sleep; 2013 Jun; 36(6):905-11. PubMed ID: 23729934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.