These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34761495)

  • 41. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications.
    Ghimire S; Klinke C
    Nanoscale; 2021 Aug; 13(29):12394-12422. PubMed ID: 34240087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spin Texture Sensitive Photodetection by Dion-Jacobson Tin Halide Perovskites.
    Mandal A; Khuntia SK; Mondal D; Mahadevan P; Bhattacharyya S
    J Am Chem Soc; 2023 Oct; ():. PubMed ID: 37906676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel PHA Organic Spacer Increases Interlayer Interactions for High Efficiency in 2D Ruddlesden-Popper CsPbI
    Yao H; Li Z; Peng G; Lei Y; Wang Q; Ci Z; Jin Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35780-35788. PubMed ID: 35913123
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prominent Free Charges Tunneling Through Organic Interlayer of 2D Perovskites.
    Li W; Feng X; Guo K; Pan W; Li M; Liu L; Song J; He Y; Wei H
    Adv Mater; 2023 May; 35(18):e2211808. PubMed ID: 36758050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrinsic Magnetic Order of Chemically Exfoliated 2D Ruddlesden-Popper Organic-Inorganic Halide Perovskite Ultrathin Films.
    Kim KY; Park G; Cho J; Kim J; Kim JS; Jung J; Park K; You CY; Oh IH
    Small; 2020 Dec; 16(52):e2005445. PubMed ID: 33241618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ruddlesden-Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications.
    Gao X; Zhang X; Yin W; Wang H; Hu Y; Zhang Q; Shi Z; Colvin VL; Yu WW; Zhang Y
    Adv Sci (Weinh); 2019 Nov; 6(22):1900941. PubMed ID: 31763136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells.
    Yukta ; Chavan RD; Prochowicz D; Yadav P; Tavakoli MM; Satapathi S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):850-860. PubMed ID: 34978806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic-Inorganic Dion-Jacobson Perovskites.
    Shi R; Long R; Fang WH; Prezhdo OV
    J Am Chem Soc; 2023 Mar; 145(9):5297-5309. PubMed ID: 36826471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 2D Perovskites with Short Interlayer Distance for High-Performance Solar Cell Application.
    Ma C; Shen D; Ng TW; Lo MF; Lee CS
    Adv Mater; 2018 May; 30(22):e1800710. PubMed ID: 29665101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion-Jacobson Perovskites Boost the Performance of Solar Cells.
    Ke W; Chen C; Spanopoulos I; Mao L; Hadar I; Li X; Hoffman JM; Song Z; Yan Y; Kanatzidis MG
    J Am Chem Soc; 2020 Sep; 142(35):15049-15057. PubMed ID: 32786780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer.
    Fu Y; Zheng W; Wang X; Hautzinger MP; Pan D; Dang L; Wright JC; Pan A; Jin S
    J Am Chem Soc; 2018 Nov; 140(46):15675-15683. PubMed ID: 30371066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoarchitectonics in dielectric/ferroelectric layered perovskites: from bulk 3D systems to 2D nanosheets.
    Osada M; Sasaki T
    Dalton Trans; 2018 Feb; 47(9):2841-2851. PubMed ID: 29165463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orbital Interactions between the Organic Semiconductor Spacer and the Inorganic Layer in Dion-Jacobson Perovskites Enable Efficient Solar Cells.
    Dong Y; Dong X; Lu D; Chen M; Zheng N; Wang R; Li Q; Xie Z; Liu Y
    Adv Mater; 2023 Jan; 35(3):e2205258. PubMed ID: 36325909
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thiophene-Based Two-Dimensional Dion-Jacobson Perovskite Solar Cells with over 15% Efficiency.
    Lu D; Lv G; Xu Z; Dong Y; Ji X; Liu Y
    J Am Chem Soc; 2020 Jun; 142(25):11114-11122. PubMed ID: 32478512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells.
    Dong X; Li X; Wang X; Zhao Y; Song W; Wang F; Xu S; Miao Z; Wu Z
    Adv Mater; 2024 May; 36(19):e2313056. PubMed ID: 38315828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.
    Zhang X; Munir R; Xu Z; Liu Y; Tsai H; Nie W; Li J; Niu T; Smilgies DM; Kanatzidis MG; Mohite AD; Zhao K; Amassian A; Liu SF
    Adv Mater; 2018 May; 30(21):e1707166. PubMed ID: 29611240
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlling layered Ruddlesden-Popper perovskites via solvent additives.
    Pan H; Zhao X; Xiu G; Li H; Zhang XL; Liang G; Shen Y; Wang M
    Nanoscale; 2020 Apr; 12(13):7330-7338. PubMed ID: 32202273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells.
    Xu Z; Lu D; Liu F; Lai H; Wan X; Zhang X; Liu Y; Chen Y
    ACS Nano; 2020 Apr; 14(4):4871-4881. PubMed ID: 32243131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase Engineering in Quasi-2D Ruddlesden-Popper Perovskites.
    Chen Y; Yu S; Sun Y; Liang Z
    J Phys Chem Lett; 2018 May; 9(10):2627-2631. PubMed ID: 29709184
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells.
    Liu P; Han N; Wang W; Ran R; Zhou W; Shao Z
    Adv Mater; 2021 Mar; 33(10):e2002582. PubMed ID: 33511702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.