These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34761518)

  • 1. Critical Role of Phosphorus in Hollow Structures Cobalt-Based Phosphides as Bifunctional Catalysts for Water Splitting.
    Zhang W; Han N; Luo J; Han X; Feng S; Guo W; Xie S; Zhou Z; Subramanian P; Wan K; Arbiol J; Zhang C; Liu S; Xu M; Zhang X; Fransaer J
    Small; 2022 Jan; 18(4):e2103561. PubMed ID: 34761518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting.
    Chen Q; Zhang Q; Liu H; Liang J; Peng W; Li Y; Zhang F; Fan X
    Small; 2021 Apr; 17(13):e2007858. PubMed ID: 33690975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CeO
    Li Y; Yi J; Qin R; Xie C; Zhao L; Lang X; Jiang Q
    J Colloid Interface Sci; 2024 May; 661():690-699. PubMed ID: 38320405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt phosphide/nickel-cobalt phosphide heterostructured hollow nanoflowers for high-performance supercapacitor and overall water splitting.
    Fu X; Zhang Z; Zheng Y; Lu J; Cheng S; Su J; Wei H; Gao Y
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1272-1282. PubMed ID: 37797503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterostructured Mo and Co-based phosphides as high-performance bifunctional electrocatalysts for overall water splitting.
    Yang H; Yang M; Hu T; Guo L; Meng R; Shi Y; Xu Y
    Phys Chem Chem Phys; 2023 Jul; 25(26):17186-17196. PubMed ID: 37345914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrids of Cobalt/Iron Phosphides Derived from Bimetal-Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.
    Zhang T; Du J; Xi P; Xu C
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):362-370. PubMed ID: 27996250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Structure Evolution in Tricomponent Metal Phosphides with Reduced Activation Energy for Efficient Electrocatalytic Oxygen Evolution.
    Wang M; Dong CL; Huang YC; Li Y; Shen S
    Small; 2018 Aug; 14(35):e1801756. PubMed ID: 30084542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic transfer and structural reconstruction in porous NF/FeNiP-CoP@NC heterostructure for robust overall water splitting in alkaline electrolytes.
    Zhang Q; Zeng X; Zhang Z; Jin C; Cui Y; Gao Y
    J Colloid Interface Sci; 2024 Jul; 675():357-368. PubMed ID: 38972123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting hydrogen and oxygen evolution of porous CoP nanosheet arrays through electronic modulating with oxygen-anion-incorporation.
    Dong R; Zhu A; Tan P; Liu Y; Jiang M; Yang L; Xie J; Pan J
    J Colloid Interface Sci; 2022 Sep; 622():239-249. PubMed ID: 35512588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt Phosphides Nanocrystals Encapsulated by P-Doped Carbon and Married with P-Doped Graphene for Overall Water Splitting.
    Yang J; Guo D; Zhao S; Lin Y; Yang R; Xu D; Shi N; Zhang X; Lu L; Lan YQ; Bao J; Han M
    Small; 2019 Mar; 15(10):e1804546. PubMed ID: 30690876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis.
    Li W; Gao X; Xiong D; Xia F; Liu J; Song WG; Xu J; Thalluri SM; Cerqueira MF; Fu X; Liu L
    Chem Sci; 2017 Apr; 8(4):2952-2958. PubMed ID: 28451361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Compartmentalization of Cobalt Phosphide in P-Doped Dual Carbon Shells for Efficient Alkaline Overall Water Splitting.
    Mohite SV; Xing R; Li B; Latthe SS; Zhao Y; Li X; Mao L; Liu S
    Inorg Chem; 2020 Feb; 59(3):1996-2004. PubMed ID: 31922740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic activity sites for the oxygen evolution reaction on binary cobalt and nickel phosphides.
    Zhou LN; Yu L; Liu C; Li YJ
    RSC Adv; 2020 Oct; 10(65):39909-39915. PubMed ID: 35515367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron regulates the interfacial charge distribution of transition metal phosphides for enhanced oxygen evolution reaction.
    Wang Y; Xie M; Dai F; Liu J; Zhang L; Zhang R; Zhang Z; Hu W
    J Colloid Interface Sci; 2022 Jun; 615():725-731. PubMed ID: 35168021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.
    Liu M; Li J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2158-65. PubMed ID: 26711014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineered CoP/Co
    Li X; Liu Y; Sun Q; Huang WH; Wang Z; Chueh CC; Chen CL; Zhu Z
    Nanoscale; 2021 Dec; 13(47):20281-20288. PubMed ID: 34817488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional metal-organic framework derived porous CoP
    Wu T; Pi M; Wang X; Zhang D; Chen S
    Phys Chem Chem Phys; 2017 Jan; 19(3):2104-2110. PubMed ID: 28045143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting.
    Huang X; Gong L; Xu H; Qin J; Ma P; Yang M; Wang K; Ma L; Mu X; Li R
    J Colloid Interface Sci; 2020 Jun; 569():140-149. PubMed ID: 32105901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity.
    Wang L; Wu H; Xi S; Chua ST; Wang F; Pennycook SJ; Yu ZG; Du Y; Xue J
    ACS Appl Mater Interfaces; 2019 May; 11(19):17359-17367. PubMed ID: 31020826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt phosphide nanowires with adjustable iridium, realizing excellent bifunctional activity for acidic water splitting.
    Tong Y; Chen P
    Dalton Trans; 2021 Jun; 50(21):7364-7371. PubMed ID: 33960350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.