These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34761781)

  • 1. A complete
    Shousha S; Khalil S; Youssef M
    Phys Chem Chem Phys; 2021 Nov; 23(45):25518-25532. PubMed ID: 34761781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation.
    Engel J; Tuller HL
    Phys Chem Chem Phys; 2014 Jun; 16(23):11374-80. PubMed ID: 24797819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Theoretical and Experimental Control of Defect Chemistry and Electrical and Photoelectrochemical Properties of Hematite Nanostructures.
    Wang J; Perry NH; Guo L; Vayssieres L; Tuller HL
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2031-2041. PubMed ID: 30576103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impacts of dopants on the small polaron mobility and conductivity in hematite - the role of disorder.
    Chen M; Grieder AC; Smart TJ; Mayford K; McNair S; Pinongcos A; Eisenberg S; Bridges F; Li Y; Ping Y
    Nanoscale; 2023 Jan; 15(4):1619-1628. PubMed ID: 36602002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning of oxygen vacancy-induced electrical conductivity in Ti-doped hematite films and its impact on photoelectrochemical water splitting.
    Biswas P; Ainabayev A; Zhussupbekova A; Jose F; O'Connor R; Kaisha A; Walls B; Shvets IV
    Sci Rep; 2020 May; 10(1):7463. PubMed ID: 32366858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.
    Smart TJ; Ping Y
    J Phys Condens Matter; 2017 Oct; 29(39):394006. PubMed ID: 28685710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo model of charge transport in hematite (alpha-Fe(2)O(3)).
    Kerisit S; Rosso KM
    J Chem Phys; 2007 Sep; 127(12):124706. PubMed ID: 17902930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning metal oxide defect chemistry by thermochemical quenching.
    Shousha S; Khalil S; Youssef M
    Phys Chem Chem Phys; 2020 Mar; 22(11):6308-6317. PubMed ID: 32133469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sn-Controlled Co-Doped Hematite for Efficient Solar-Assisted Chargeable Zn-Air Batteries.
    Park J; Yoon KY; Kwak MJ; Lee JE; Kang J; Jang JH
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54906-54915. PubMed ID: 34751554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective α-Fe2O3(0001): an ab initio study.
    Nguyen MT; Seriani N; Gebauer R
    Chemphyschem; 2014 Oct; 15(14):2930-5. PubMed ID: 25045043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics.
    Zhou Z; Liu J; Long R; Li L; Guo L; Prezhdo OV
    J Am Chem Soc; 2017 May; 139(19):6707-6717. PubMed ID: 28445637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of dopant (Ti or Sn) and oxygen vacancy on the electronic properties of hematite: a DFT investigation.
    Pan H; Ao D; Qin G
    RSC Adv; 2020 Jun; 10(39):23263-23269. PubMed ID: 35520340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why Silicon Doping Accelerates Electron Polaron Diffusion in Hematite.
    Zhou Z; Long R; Prezhdo OV
    J Am Chem Soc; 2019 Dec; 141(51):20222-20233. PubMed ID: 31791126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the roles of oxygen vacancies in hematite for solar water splitting.
    Zhao X; Feng J; Chen S; Huang Y; Sum TC; Chen Z
    Phys Chem Chem Phys; 2017 Jan; 19(2):1074-1082. PubMed ID: 27858025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
    Liao P; Keith JA; Carter EA
    J Am Chem Soc; 2012 Aug; 134(32):13296-309. PubMed ID: 22788792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of native point defects in α-Fe2O3: an ab initio study.
    Lee J; Han S
    Phys Chem Chem Phys; 2013 Nov; 15(43):18906-14. PubMed ID: 24092391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation.
    Yang TY; Kang HY; Sim U; Lee YJ; Lee JH; Koo B; Nam KT; Joo YC
    Phys Chem Chem Phys; 2013 Feb; 15(6):2117-24. PubMed ID: 23288103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT study of defects in paramagnetic Cr
    Huang X; Fossati PCM; Martinelli L; Bosonnet S; Latu-Romain L; Wouters Y
    Phys Chem Chem Phys; 2022 May; 24(17):10488-10498. PubMed ID: 35441617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.