BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34761805)

  • 1. Skeletal muscle-adipose cocultured tissue fabricated using cell-laden microfibers and a hydrogel sheet.
    Jo B; Morimoto Y; Takeuchi S
    Biotechnol Bioeng; 2022 Feb; 119(2):636-643. PubMed ID: 34761805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering.
    Raj R; Sobhan PK; Pratheesh KV; Anilkumar TV
    J Biomed Mater Res A; 2020 Sep; 108(9):1922-1933. PubMed ID: 32319161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering.
    Volpi M; Paradiso A; Costantini M; Świȩszkowski W
    ACS Biomater Sci Eng; 2022 Feb; 8(2):379-405. PubMed ID: 35084836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiprotein collagen/keratin hydrogel promoted myogenesis and angiogenesis of injured skeletal muscles in a mouse model.
    Namjoo AR; Hassani A; Amini H; Nazaryabrbekoh F; Saghati S; Saadatlou MAE; Khoshfetrat AB; Khosrowshahi ND; Rahbarghazi R
    BMC Biotechnol; 2024 Apr; 24(1):23. PubMed ID: 38671404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.
    Ostrovidov S; Ahadian S; Ramon-Azcon J; Hosseini V; Fujie T; Parthiban SP; Shiku H; Matsue T; Kaji H; Ramalingam M; Bae H; Khademhosseini A
    J Tissue Eng Regen Med; 2017 Feb; 11(2):582-595. PubMed ID: 25393357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial Network Formation Within Human Tissue-Engineered Skeletal Muscle.
    Gholobova D; Decroix L; Van Muylder V; Desender L; Gerard M; Carpentier G; Vandenburgh H; Thorrez L
    Tissue Eng Part A; 2015 Oct; 21(19-20):2548-58. PubMed ID: 26177063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coculture Method to Obtain Endothelial Networks Within Human Tissue-Engineered Skeletal Muscle.
    Gholobova D; Gerard M; Terrie L; Desender L; Shansky J; Vandenburgh H; Thorrez L
    Methods Mol Biol; 2019; 1889():169-183. PubMed ID: 30367414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering functional and histological regeneration of vascularized skeletal muscle.
    Gilbert-Honick J; Iyer SR; Somers SM; Lovering RM; Wagner K; Mao HQ; Grayson WL
    Biomaterials; 2018 May; 164():70-79. PubMed ID: 29499437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue.
    Chuang CH; Lin RZ; Melero-Martin JM; Chen YC
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S434-S447. PubMed ID: 30146913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate.
    Hosseini V; Ahadian S; Ostrovidov S; Camci-Unal G; Chen S; Kaji H; Ramalingam M; Khademhosseini A
    Tissue Eng Part A; 2012 Dec; 18(23-24):2453-65. PubMed ID: 22963391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering.
    Villa C; Martello F; Erratico S; Tocchio A; Belicchi M; Lenardi C; Torrente Y
    J Tissue Eng Regen Med; 2017 Jan; 11(1):187-196. PubMed ID: 24799388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D cellular alignment and biomimetic mechanical stimulation enhance human adipose-derived stem cell myogenesis.
    Ergene E; Sezlev Bilecen D; Kaya B; Yilgor Huri P; Hasirci V
    Biomed Mater; 2020 Jul; 15(5):055017. PubMed ID: 32442983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays.
    Dixon TA; Cohen E; Cairns DM; Rodriguez M; Mathews J; Jose RR; Kaplan DL
    Tissue Eng Part C Methods; 2018 Jun; 24(6):346-359. PubMed ID: 29739270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
    Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N
    PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional differences in porcine adipocytes isolated from skeletal muscle and adipose tissues as identified by a proteomic approach.
    Gondret F; Guitton N; Guillerm-Regost C; Louveau I
    J Anim Sci; 2008 Sep; 86(9):2115-25. PubMed ID: 18310487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.