These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34761816)

  • 1. When cats need to see to step accurately?
    Volgushev M; Nguyen CT; Iyer GS; Beloozerova IN
    J Physiol; 2022 Jan; 600(1):75-94. PubMed ID: 34761816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaze coordination with strides during walking in the cat.
    Zubair HN; Chu KMI; Johnson JL; Rivers TJ; Beloozerova IN
    J Physiol; 2019 Nov; 597(21):5195-5229. PubMed ID: 31460673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visually guided stepping under conditions of step cycle-related denial of visual information.
    Hollands MA; Marple-Horvat DE
    Exp Brain Res; 1996 May; 109(2):343-56. PubMed ID: 8738381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlimb coordination in cat locomotion investigated with perturbation. I. Behavioral and electromyographic study on symmetric limbs of decerebrate and awake walking cats.
    Matsukawa K; Kamei H; Minoda K; Udo M
    Exp Brain Res; 1982; 46(3):425-37. PubMed ID: 7095048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous control of two rhythmical behaviors. I. Locomotion with paw-shake response in normal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):171-83. PubMed ID: 3746393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlimb coordination in cat locomotion investigated with perturbation. II. Correlates in neuronal activity of Deiter's cells of decerebrate walking cats.
    Udo M; Kamei H; Matsukawa K; Tanaka K
    Exp Brain Res; 1982; 46(3):438-47. PubMed ID: 7095049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping.
    Beloozerova IN; Farrell BJ; Sirota MG; Prilutsky BI
    J Neurophysiol; 2010 Apr; 103(4):2285-300. PubMed ID: 20164404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cat Distal Forelimb Joints and Locomotion: An X-ray Study.
    Caliebe F; Häubetaler J; Hoffmann P; Illert M; Schirrmacher J; Wiedemann E
    Eur J Neurosci; 1991 Oct; 3(1):18-31. PubMed ID: 12106265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body stability and muscle and motor cortex activity during walking with wide stance.
    Farrell BJ; Bulgakova MA; Beloozerova IN; Sirota MG; Prilutsky BI
    J Neurophysiol; 2014 Aug; 112(3):504-24. PubMed ID: 24790167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of somatosensory-responsive neurons in high subdivisions of SI cortex during locomotion.
    Favorov OV; Nilaweera WU; Miasnikov AA; Beloozerova IN
    J Neurosci; 2015 May; 35(20):7763-76. PubMed ID: 25995465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):184-95. PubMed ID: 3746394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics.
    Buford JA; Zernicke RF; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):745-55. PubMed ID: 2230921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze shifts and fixations dominate gaze behavior of walking cats.
    Rivers TJ; Sirota MG; Guttentag AI; Ogorodnikov DA; Shah NA; Beloozerova IN
    Neuroscience; 2014 Sep; 275():477-99. PubMed ID: 24973656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Thalamo-Cortical Controls for Shoulder, Elbow, and Wrist during Locomotion.
    Beloozerova IN; Stout EE; Sirota MG
    Front Comput Neurosci; 2013; 7():62. PubMed ID: 23734124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.
    Carlson-Kuhta P; Trank TV; Smith JL
    J Neurophysiol; 1998 Apr; 79(4):1687-701. PubMed ID: 9535939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the ventrolateral thalamus to the locomotion-related activity of motor cortex.
    Beloozerova IN; Marlinski V
    J Neurophysiol; 2020 Nov; 124(5):1480-1504. PubMed ID: 32783584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.