BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 34761915)

  • 1. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections
    Cyphert EL; Zhang N; Learn GD; Hernandez CJ; von Recum HA
    ACS Infect Dis; 2021 Dec; 7(12):3125-3160. PubMed ID: 34761915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections.
    Barros J; Monteiro FJ; Ferraz MP
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive glasses as delivery systems for antimicrobial agents.
    Rivadeneira J; Gorustovich A
    J Appl Microbiol; 2017 Jun; 122(6):1424-1437. PubMed ID: 28035706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic.
    Garg D; Matai I; Sachdev A
    ACS Biomater Sci Eng; 2021 Jun; 7(6):1933-1961. PubMed ID: 33826312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials approaches to treating implant-associated osteomyelitis.
    Inzana JA; Schwarz EM; Kates SL; Awad HA
    Biomaterials; 2016 Mar; 81():58-71. PubMed ID: 26724454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections.
    Akay S; Yaghmur A
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings.
    Ghimire A; Song J
    ACS Appl Mater Interfaces; 2021 May; 13(18):20921-20937. PubMed ID: 33914499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on Antimicrobial Coatings for Biomaterial Implants and Medical Devices.
    Chen L; Song X; Xing F; Wang Y; Wang Y; He Z; Sun L
    J Biomed Nanotechnol; 2020 Jun; 16(6):789-809. PubMed ID: 33187577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections.
    Ye Z; Sang T; Li K; Fischer NG; Mutreja I; Echeverría C; Kumar D; Tang Z; Aparicio C
    Acta Biomater; 2022 Mar; 140():338-349. PubMed ID: 34896631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.
    Yazici H; O'Neill MB; Kacar T; Wilson BR; Oren EE; Sarikaya M; Tamerler C
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5070-81. PubMed ID: 26795060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro.
    Beck S; Sehl C; Voortmann S; Verhasselt HL; Edwards MJ; Buer J; Hasenberg M; Gulbins E; Becker KA
    J Mol Med (Berl); 2020 Feb; 98(2):209-219. PubMed ID: 31863153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coatings and surface modifications imparting antimicrobial activity to orthopedic implants.
    Kargupta R; Bok S; Darr CM; Crist BD; Gangopadhyay K; Gangopadhyay S; Sengupta S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(5):475-95. PubMed ID: 24867883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selfprotective smart orthopedic implants.
    Parvizi J; Antoci V; Hickok NJ; Shapiro IM
    Expert Rev Med Devices; 2007 Jan; 4(1):55-64. PubMed ID: 17187471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A smart coating with integrated physical antimicrobial and strain-mapping functionalities for orthopedic implants.
    Zhang Y; Cui J; Chen KY; Kuo SH; Sharma J; Bhatta R; Liu Z; Ellis-Mohr A; An F; Li J; Chen Q; Foss KD; Wang H; Li Y; McCoy AM; Lau GW; Cao Q
    Sci Adv; 2023 May; 9(18):eadg7397. PubMed ID: 37146142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infections @ Trauma/Orthopedic Implants: Recent Advances on Materials, Methods, and Microbes-A Mini-Review.
    Wildemann B; Jandt KD
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Special aspects of implant-associated infection in orthopedic surgery. From the pathophysiology to custom-tailored prevention strategies].
    Schierholz JM; Morsczeck C; Brenner N; König DP; Yücel N; Korenkov M; Neugebauer E; Rump AF; Waalenkamp G; Beuth J; Pulverer G; Arens S
    Orthopade; 2004 Apr; 33(4):397-404. PubMed ID: 15141663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview.
    Montanaro L; Campoccia D; Arciola CR
    Int J Artif Organs; 2008 Sep; 31(9):771-6. PubMed ID: 18924088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention.
    Li P; Yin R; Cheng J; Lin J
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobiotechnology Perspectives on Prevention and Treatment of Ortho-paedic Implant Associated Infection.
    Borse V; Pawar V; Shetty G; Mullaji A; Srivastava R
    Curr Drug Deliv; 2016; 13(2):175-85. PubMed ID: 26263909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods.
    Lin X; Yang S; Lai K; Yang H; Webster TJ; Yang L
    Nanomedicine; 2017 Jan; 13(1):123-142. PubMed ID: 27553074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.