These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34762404)

  • 1. Self-Limited Formation of Bowl-Shaped Nanopores for Directional DNA Translocation.
    Pham NH; Yao Y; Wen C; Li S; Zeng S; Nyberg T; Tran TT; Primetzhofer D; Zhang Z; Zhang SL
    ACS Nano; 2021 Nov; 15(11):17938-17946. PubMed ID: 34762404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electric field strength in orifice-like nanopores of ultrathin membranes.
    Getpreecharsawas J; McGrath JL; Borkholder DA
    Nanotechnology; 2015 Jan; 26(4):045704. PubMed ID: 25557214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore.
    Liu Q; Wu H; Wu L; Xie X; Kong J; Ye X; Liu L
    PLoS One; 2012; 7(9):e46014. PubMed ID: 23029365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Single Nucleotides by a Tiny Charged Solid-State Nanopore.
    Yang H; Li Z; Si W; Lin K; Ma J; Li K; Sun L; Sha J; Chen Y
    J Phys Chem B; 2018 Aug; 122(32):7929-7935. PubMed ID: 30047733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
    Sischka A; Galla L; Meyer AJ; Spiering A; Knust S; Mayer M; Hall AR; Beyer A; Reimann P; Gölzhäuser A; Anselmetti D
    Analyst; 2015 Jul; 140(14):4843-7. PubMed ID: 25768647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore.
    Leong IW; Tsutsui M; Yokota K; Taniguchi M
    Anal Chem; 2021 Dec; 93(49):16700-16708. PubMed ID: 34860500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by Feedback-Controlled Laser Processing.
    Zvuloni E; Zrehen A; Gilboa T; Meller A
    ACS Nano; 2021 Jul; 15(7):12189-12200. PubMed ID: 34219449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis.
    Firnkes M; Pedone D; Knezevic J; Döblinger M; Rant U
    Nano Lett; 2010 Jun; 10(6):2162-7. PubMed ID: 20438117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores.
    Qiu Y; Siwy ZS; Wanunu M
    Anal Chem; 2019 Jan; 91(1):996-1004. PubMed ID: 30516369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Capture in Solid-State Multipores.
    Tsutsui M; Yokota K; Nakada T; Arima A; Tonomura W; Taniguchi M; Washio T; Kawai T
    ACS Sens; 2018 Dec; 3(12):2693-2701. PubMed ID: 30421923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.
    Bafna JA; Pangeni S; Winterhalter M; Aksoyoglu MA
    Biophys J; 2020 Jun; 118(11):2844-2852. PubMed ID: 32348725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region.
    Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M
    Adv Mater; 2024 Jun; ():e2401761. PubMed ID: 38860821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Deceleration and Sequencing Using Si
    Si W; Zhang Z; Chen J; Wu G; Zhang Y; Sha J
    Chemphyschem; 2024 Apr; 25(7):e202300866. PubMed ID: 38267372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.
    Xu X; Li C; Zhou Y; Jin Y
    ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown.
    Cheng P; Zhao C; Pan Q; Xiong Z; Chen Q; Miao X; He Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.