These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34762915)

  • 1. Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review.
    Qiang X; Wang L; Niu J; Gong X; Wang G
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1910-1917. PubMed ID: 34762915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AIE based GSH activatable photosensitizer for imaging-guided photodynamic therapy.
    Zhang YH; Li X; Huang L; Kim HS; An J; Lan M; Cao QY; Kim JS
    Chem Commun (Camb); 2020 Sep; 56(71):10317-10320. PubMed ID: 32760939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific interaction of jacalin with phycocyanin, a fluorescent phycobiliprotein.
    Pandey G; Fatma T; Cowsik SM; Komath SS
    J Photochem Photobiol B; 2009 Nov; 97(2):87-93. PubMed ID: 19740673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BODIPY dyes in photodynamic therapy.
    Kamkaew A; Lim SH; Lee HB; Kiew LV; Chung LY; Burgess K
    Chem Soc Rev; 2013 Jan; 42(1):77-88. PubMed ID: 23014776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular generation of fluorescent phycobiliproteins.
    Wu XJ; Chang K; Luo J; Zhou M; Scheer H; Zhao KH
    Photochem Photobiol Sci; 2013 Jun; 12(6):1036-40. PubMed ID: 23545837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer.
    Yin M; Li Z; Liu Z; Ren J; Yang X; Qu X
    Chem Commun (Camb); 2012 Jul; 48(52):6556-8. PubMed ID: 22622597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual selective antitumor agent and fluorescence probe: the binary BMVC-porphyrin photosensitizer.
    Kang CC; Chen CT; Cho CC; Lin YC; Chang CC; Chang TC
    ChemMedChem; 2008 May; 3(5):725-8. PubMed ID: 18260073
    [No Abstract]   [Full Text] [Related]  

  • 8. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro.
    Qiao XF; Zhou JC; Xiao JW; Wang YF; Sun LD; Yan CH
    Nanoscale; 2012 Aug; 4(15):4611-23. PubMed ID: 22706800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging.
    Fuenzalida Werner JP; Mishra K; Huang Y; Vetschera P; Glasl S; Chmyrov A; Richter K; Ntziachristos V; Stiel AC
    ACS Chem Biol; 2019 Sep; 14(9):1896-1903. PubMed ID: 31389680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing heavy metal binding to phycobiliproteins.
    Bellamy-Carter J; Sound JK; Leney AC
    FEBS J; 2022 Aug; 289(15):4646-4656. PubMed ID: 35156751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BODIPYs to the rescue: Potential applications in photodynamic inactivation.
    Durantini AM; Heredia DA; Durantini JE; Durantini EN
    Eur J Med Chem; 2018 Jan; 144():651-661. PubMed ID: 29289888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications.
    Pagels F; Guedes AC; Amaro HM; Kijjoa A; Vasconcelos V
    Biotechnol Adv; 2019; 37(3):422-443. PubMed ID: 30797095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary analysis of phycobiliproteins: implications for their structural and functional relationships.
    Zhao F; Qin S
    J Mol Evol; 2006 Sep; 63(3):330-40. PubMed ID: 16830096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells.
    Gao M; Hu Q; Feng G; Tomczak N; Liu R; Xing B; Tang BZ; Liu B
    Adv Healthc Mater; 2015 Apr; 4(5):659-63. PubMed ID: 25530179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application.
    Zhao X; Liu J; Fan J; Chao H; Peng X
    Chem Soc Rev; 2021 Mar; 50(6):4185-4219. PubMed ID: 33527104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microenvironment-triggered dual-activation of a photosensitizer- fluorophore conjugate for tumor specific imaging and photodynamic therapy.
    Wang C; Wang S; Wang Y; Wu H; Bao K; Sheng R; Li X
    Sci Rep; 2020 Jul; 10(1):12127. PubMed ID: 32699340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mitochondria-targeted fluorescent dye naphthalimide-thioether-cyanine for NIR-activated photodynamic treatment of cancer cells.
    Shen R; Bai J; Qian Y
    J Mater Chem B; 2021 Mar; 9(10):2462-2468. PubMed ID: 33634295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic therapy by conjugation of cell-penetrating peptide with fluorochrome.
    Park CK; Kim YH; Hwangbo S; Cho H
    Int J Nanomedicine; 2017; 12():8185-8196. PubMed ID: 29184407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies.
    Yuan A; Wu J; Tang X; Zhao L; Xu F; Hu Y
    J Pharm Sci; 2013 Jan; 102(1):6-28. PubMed ID: 23132644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties.
    Tan X; Luo S; Wang D; Su Y; Cheng T; Shi C
    Biomaterials; 2012 Mar; 33(7):2230-9. PubMed ID: 22182749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.