BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34762991)

  • 1. Classical swine fever virus NS4B protein interacts with MAVS and inhibits IL-8 expression in PAMs.
    Dong W; Jing H; Wang H; Cao S; Sun Y; Zhang Y; Lv H
    Virus Res; 2022 Jan; 307():198622. PubMed ID: 34762991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAVS induces a host cell defense to inhibit CSFV infection.
    Dong W; Lv H; Li C; Liu Y; Wang C; Lin J; Wang Y; Qian G; Guo K; Zhang Y
    Arch Virol; 2018 Jul; 163(7):1805-1821. PubMed ID: 29556776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF-Mediated Inhibition of Classical Swine Fever Virus Replication Is IRF1-, NF-κB- and JAK/STAT Signaling-Dependent.
    Liniger M; Gerber M; Renzullo S; García-Nicolás O; Ruggli N
    Viruses; 2021 Oct; 13(10):. PubMed ID: 34696447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acid Synthase Is Involved in Classical Swine Fever Virus Replication by Interaction with NS4B.
    Liu YY; Liang XD; Liu CC; Cheng Y; Chen H; Baloch AS; Zhang J; Go YY; Zhou B
    J Virol; 2021 Aug; 95(17):e0078121. PubMed ID: 34132567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical swine fever virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-κB activation to promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages.
    Dong XY; Liu WJ; Zhao MQ; Wang JY; Pei JJ; Luo YW; Ju CM; Chen JD
    Virol J; 2013 Sep; 10():286. PubMed ID: 24034559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porcine RING Finger Protein 114 Inhibits Classical Swine Fever Virus Replication via K27-Linked Polyubiquitination of Viral NS4B.
    Zhang Y; Zhang H; Zheng GL; Yang Q; Yu S; Wang J; Li S; Li LF; Qiu HJ
    J Virol; 2019 Nov; 93(21):. PubMed ID: 31413123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin 2 Is a Novel E2-Interacting Protein That Inhibits the Replication of Classical Swine Fever Virus.
    Li S; Wang J; He WR; Feng S; Li Y; Wang X; Liao Y; Qin HY; Li LF; Dong H; Sun Y; Luo Y; Qiu HJ
    J Virol; 2015 Aug; 89(16):8510-24. PubMed ID: 26041303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-κB signaling pathway.
    Dong XY; Tang SQ
    Virol J; 2016 Jun; 13():101. PubMed ID: 27296632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical swine fever virus non-structural protein 4A recruits dihydroorotate dehydrogenase to facilitate viral replication.
    Zhao B-q; Chen J; Chen J-X; Cheng Y; Zhou J-f; Bai J-s; Mao D-y; Zhou B
    J Virol; 2024 Jun; 98(6):e0049424. PubMed ID: 38757985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical Swine Fever Virus Infection and Its NS4A Protein Expression Induce IL-8 Production through MAVS Signaling Pathway in Swine Umbilical Vein Endothelial Cells.
    Dong W; Lv H; Guo K; Wang T; Ouyang Y; Jin M; Zhang Y
    Front Microbiol; 2017; 8():2687. PubMed ID: 29375538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine RACK1 negatively regulates the infection of classical swine fever virus and the NF-κB activation in PK-15 cells.
    Wang X; Gao L; Yang X; Zuo Q; Lan R; Li M; Yang C; Lin Y; Liu J; Yin G
    Vet Microbiol; 2020 Jul; 246():108711. PubMed ID: 32605753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity.
    Li LF; Yu J; Li Y; Wang J; Li S; Zhang L; Xia SL; Yang Q; Wang X; Yu S; Luo Y; Sun Y; Zhu Y; Munir M; Qiu HJ
    J Virol; 2016 May; 90(9):4412-4426. PubMed ID: 26889038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRAF6 is a novel NS3-interacting protein that inhibits classical swine fever virus replication.
    Lv H; Dong W; Cao Z; Li X; Wang J; Qian G; Lv Q; Wang C; Guo K; Zhang Y
    Sci Rep; 2017 Jul; 7(1):6737. PubMed ID: 28751780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ESCRT-I Subunit Tsg101 Plays Novel Dual Roles in Entry and Replication of Classical Swine Fever Virus.
    Liu CC; Liu YY; Cheng Y; Zhang YN; Zhang J; Liang XD; Gao Y; Chen H; Baloch AS; Yang Q; Go YY; Zhou B
    J Virol; 2021 Feb; 95(6):. PubMed ID: 33328308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication.
    Lv H; Dong W; Guo K; Jin M; Li X; Li C; Zhang Y
    Viruses; 2018 Jun; 10(6):. PubMed ID: 29874812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rab22a cooperates with Rab5 and NS4B in classical swine fever virus entry process.
    Wang T; Liu Y; Sun Y; Zhang L; Guo K; Zhang Y
    Vet Microbiol; 2022 Mar; 266():109363. PubMed ID: 35134740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiviral activity of ISG15 against classical swine fever virus replication in porcine alveolar macrophages via inhibition of autophagy by ISGylating BECN1.
    Li C; Wang Y; Zheng H; Dong W; Lv H; Lin J; Guo K; Zhang Y
    Vet Res; 2020 Feb; 51(1):22. PubMed ID: 32093773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence.
    Tamura T; Ruggli N; Nagashima N; Okamatsu M; Igarashi M; Mine J; Hofmann MA; Liniger M; Summerfield A; Kida H; Sakoda Y
    J Gen Virol; 2015 Sep; 96(9):2623-2635. PubMed ID: 26018962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection.
    Li X; Song Y; Wang X; Fu C; Zhao F; Zou L; Wu K; Chen W; Li Z; Fan J; Li Y; Li B; Zeng S; Liu X; Zhao M; Yi L; Chen J; Fan S
    Emerg Microbes Infect; 2023 Dec; 12(1):2164217. PubMed ID: 36583373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical swine fever virus failed to activate nuclear factor-kappa b signaling pathway both in vitro and in vivo.
    Chen LJ; Dong XY; Zhao MQ; Shen HY; Wang JY; Pei JJ; Liu WJ; Luo YW; Ju CM; Chen JD
    Virol J; 2012 Nov; 9():293. PubMed ID: 23186553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.