These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34763171)

  • 1. Limiting nitrate triggered increased EPS film but decreased biocorrosion of copper induced by Pseudomonas aeruginosa.
    Xu Z; Dou W; Chen S; Pu Y; Chen Z
    Bioelectrochemistry; 2022 Feb; 143():107990. PubMed ID: 34763171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.
    Xia J; Yang C; Xu D; Sun D; Nan L; Sun Z; Li Q; Gu T; Yang K
    Biofouling; 2015; 31(6):481-92. PubMed ID: 26194639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.
    Jia R; Yang D; Xu D; Gu T
    Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.
    Jin J; Guan Y
    Bioresour Technol; 2014 Oct; 169():387-394. PubMed ID: 25069092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular Electron Transfer by
    Chugh B; Sheetal ; Singh M; Thakur S; Pani B; Singh AK; Saji VS
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1049-1059. PubMed ID: 35199512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocorrosion inhibition of Cu70:Ni30 by Bacillus subtilis strain S1X and Pseudomonas aeruginosa strain ZK biofilms.
    Wadood HZ; Rajasekar A; Farooq A; Ting YP; Sabri AN
    J Basic Microbiol; 2020 Mar; 60(3):243-252. PubMed ID: 31840841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions.
    Reichhardt C; Jacobs HM; Matwichuk M; Wong C; Wozniak DJ; Parsek MR
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32661078
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase.
    Xu L; Ivanova SA; Gu T
    Bioelectrochemistry; 2023 Dec; 154():108508. PubMed ID: 37451042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion.
    Liu Z; Cui T; Chen Y; Dong Z
    Bioelectrochemistry; 2023 Aug; 152():108412. PubMed ID: 36934621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term effects of Cu(II) on denitrification in hydrogen-based membrane biofilm reactor: Performance, extracellular polymeric substances and microbial communities.
    Xie T; Xi Y; Liu Y; Liu H; Su Z; Huang Y; Xu W; Wang D; Zhang C; Li X
    Sci Total Environ; 2022 Jul; 830():154526. PubMed ID: 35288132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa.
    Zhou E; Zhang M; Huang Y; Li H; Wang J; Jiang G; Jiang C; Xu D; Wang Q; Wang F
    Water Res; 2022 Jul; 220():118634. PubMed ID: 35691192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.
    Li H; Zhou E; Zhang D; Xu D; Xia J; Yang C; Feng H; Jiang Z; Li X; Gu T; Yang K
    Sci Rep; 2016 Feb; 6():20190. PubMed ID: 26846970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine.
    Jia R; Yang D; Xu D; Gu T
    Sci Rep; 2017 Jul; 7(1):6946. PubMed ID: 28761161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced formation of carbonaceous and nitrogenous disinfection byproducts from biofilm extracellular polymeric substances undercatalysis of copper corrosion products.
    Hu J; Wang C; Shao B; Fu L; Yu J; Qiang Z; Chen J
    Sci Total Environ; 2020 Jun; 723():138160. PubMed ID: 32224409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration mechanism of riboflavin on Fe
    Lu S; Zhu H; Xue N; Chen S; Liu G; Dou W
    Sci Total Environ; 2024 Aug; 939():173613. PubMed ID: 38815822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099.
    Li Y; Shi X; Li J; Zeng Y; Shen M; Yan W; Yang K
    Arch Microbiol; 2022 May; 204(6):299. PubMed ID: 35513559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment.
    Chen Z; Dou W; Chen S; Pu Y; Xu Z
    Bioelectrochemistry; 2022 Apr; 144():108040. PubMed ID: 34959026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives.
    Wang Y; Zhang R; Duan J; Shi X; Zhang Y; Guan F; Sand W; Hou B
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements.
    Lu S; He Y; Xu R; Wang N; Chen S; Dou W; Cheng X; Liu G
    Bioelectrochemistry; 2023 Jun; 151():108377. PubMed ID: 36731176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbe-surface interactions in biofouling and biocorrosion processes.
    Beech IB; Sunner JA; Hiraoka K
    Int Microbiol; 2005 Sep; 8(3):157-68. PubMed ID: 16200494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.