These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34763212)

  • 1. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water.
    Priyadarshi A; Khavari M; Bin Shahrani S; Subroto T; Yusuf LA; Conte M; Prentice P; Pericleous K; Eskin D; Tzanakis I
    Ultrason Sonochem; 2021 Dec; 80():105820. PubMed ID: 34763212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the governing fragmentation mechanism of primary intermetallics by induced cavitation.
    Priyadarshi A; Khavari M; Subroto T; Conte M; Prentice P; Pericleous K; Eskin D; Durodola J; Tzanakis I
    Ultrason Sonochem; 2021 Jan; 70():105260. PubMed ID: 32818723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview and critical assessment of the mechanisms of microstructural refinement during ultrasonic solidification of metals.
    Balasubramani N; Venezuela J; Yang N; Wang G; StJohn D; Dargusch M
    Ultrason Sonochem; 2022 Sep; 89():106151. PubMed ID: 36067645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.
    Wang F; Tzanakis I; Eskin D; Mi J; Connolley T
    Ultrason Sonochem; 2017 Nov; 39():66-76. PubMed ID: 28732991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental studies of ultrasonic melt processing.
    Eskin DG; Tzanakis I; Wang F; Lebon GSB; Subroto T; Pericleous K; Mi J
    Ultrason Sonochem; 2019 Apr; 52():455-467. PubMed ID: 30594518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys.
    Zhang L; Eskin DG; Katgerman L
    J Mater Sci; 2011; 46(15):5252-5259. PubMed ID: 36039104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.
    Chen Q; Lin S; Yang C; Fan C; Ge H
    Ultrason Sonochem; 2017 Nov; 39():403-413. PubMed ID: 28732962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements.
    Priyadarshi A; Khavari M; Subroto T; Prentice P; Pericleous K; Eskin D; Durodola J; Tzanakis I
    Ultrason Sonochem; 2021 Nov; 79():105792. PubMed ID: 34666238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation.
    Beckwith C; Djambazov G; Pericleous K; Tonry C
    Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale up design study on process vessel dimensions for ultrasonic processing of water and liquid aluminium.
    Khavari M; Priyadarshi A; Subroto T; Beckwith C; Pericleous K; Eskin DG; Tzanakis I
    Ultrason Sonochem; 2021 Aug; 76():105647. PubMed ID: 34182315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical investigation of acoustic pressures in different liquids.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D
    Ultrason Sonochem; 2018 Apr; 42():411-421. PubMed ID: 29429686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contactless Ultrasonic Cavitation in Alloy Melts.
    Pericleous K; Bojarevics V; Djambazov G; Dybalska A; Griffiths WD; Tonry C
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ observation of phase separation dynamics for immiscible aqueous solution within ultrasonic field.
    Zhang Y; Wu W; Wang J; Zhai W; Wei B
    Ultrason Sonochem; 2023 Nov; 100():106634. PubMed ID: 37820413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field.
    Biasiori-Poulanges L; Lukić B; Supponen O
    Ultrason Sonochem; 2024 Jan; 102():106738. PubMed ID: 38150955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed imaging of ultrasonic emulsification using a water-gallium system.
    Yamamoto T; Matsutaka R; Komarov SV
    Ultrason Sonochem; 2021 Mar; 71():105387. PubMed ID: 33246315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic resonance for contactless ultrasonic cavitation in alloy melts.
    Tonry CEH; Djambazov G; Dybalska A; Griffiths WD; Beckwith C; Bojarevics V; Pericleous KA
    Ultrason Sonochem; 2020 May; 63():104959. PubMed ID: 31958707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation and analysis of ultrasonic capillary effect in molten aluminium.
    Tzanakis I; Xu WW; Eskin DG; Lee PD; Kotsovinos N
    Ultrason Sonochem; 2015 Nov; 27():72-80. PubMed ID: 26186822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field.
    Wang S; Kang J; Zhang X; Guo Z
    Ultrasonics; 2018 Feb; 83():26-32. PubMed ID: 28835352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.