These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 34763618)
1. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting. Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618 [TBL] [Abstract][Full Text] [Related]
2. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers. Schrøder Jakobsen L; Samani A; Desbrosses K; de Zee M; Madeleine P IISE Trans Occup Ergon Hum Factors; 2024; 12(3):149-161. PubMed ID: 38869954 [TBL] [Abstract][Full Text] [Related]
3. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks. Madinei S; Nussbaum MA J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578 [TBL] [Abstract][Full Text] [Related]
4. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical evaluation of a new passive back support exoskeleton. Koopman AS; Näf M; Baltrusch SJ; Kingma I; Rodriguez-Guerrero C; Babič J; de Looze MP; van Dieën JH J Biomech; 2020 May; 105():109795. PubMed ID: 32423541 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures. van Sluijs RM; Wehrli M; Brunner A; Lambercy O J Biomech; 2023 Mar; 149():111489. PubMed ID: 36806003 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. Tröster M; Budde S; Maufroy C; Andersen MS; Rasmussen J; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897411 [TBL] [Abstract][Full Text] [Related]
9. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models. Moya-Esteban A; Durandau G; van der Kooij H; Sartori M J Biomech; 2023 Aug; 157():111727. PubMed ID: 37499430 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical analysis of different back-supporting exoskeletons regarding musculoskeletal loading during lifting and holding. Johns J; Schultes I; Heinrich K; Potthast W; Glitsch U J Biomech; 2024 May; 168():112125. PubMed ID: 38688184 [TBL] [Abstract][Full Text] [Related]
11. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. Koopman AS; Kingma I; de Looze MP; van Dieën JH J Biomech; 2020 Mar; 102():109486. PubMed ID: 31718821 [TBL] [Abstract][Full Text] [Related]
12. The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting. Koopman AS; Toxiri S; Power V; Kingma I; van Dieën JH; Ortiz J; de Looze MP J Biomech; 2019 Jun; 91():14-22. PubMed ID: 31122661 [TBL] [Abstract][Full Text] [Related]
13. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608 [TBL] [Abstract][Full Text] [Related]
14. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support. van Sluijs R; Scholtysik T; Brunner A; Kuoni L; Bee D; Kos M; Bartenbach V; Lambercy O Appl Ergon; 2024 Oct; 120():104332. PubMed ID: 38876001 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task. Schwartz M; Theurel J; Desbrosses K Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360352 [TBL] [Abstract][Full Text] [Related]
16. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height. van der Have A; Rossini M; Rodriguez-Guerrero C; Van Rossom S; Jonkers I Appl Ergon; 2022 Sep; 103():103800. PubMed ID: 35598416 [TBL] [Abstract][Full Text] [Related]
17. Modeling the metabolic reductions of a passive back-support exoskeleton. Alemi MM; Simon AA; Geissinger J; Asbeck AT J Appl Physiol (1985); 2022 Mar; 132(3):737-760. PubMed ID: 35023764 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks. Schwartz M; Desbrosses K; Theurel J; Mornieux G Int J Environ Res Public Health; 2023 Jul; 20(15):. PubMed ID: 37569010 [TBL] [Abstract][Full Text] [Related]
19. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics. Schiebl J; Tröster M; Idoudi W; Gneiting E; Spies L; Maufroy C; Schneider U; Bauernhansl T Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497613 [TBL] [Abstract][Full Text] [Related]
20. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Kermavnar T; de Vries AW; de Looze MP; O'Sullivan LW Ergonomics; 2021 Jun; 64(6):685-711. PubMed ID: 33369518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]