These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 34763618)
21. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Picchiotti MT; Weston EB; Knapik GG; Dufour JS; Marras WS Appl Ergon; 2019 Feb; 75():1-7. PubMed ID: 30509514 [TBL] [Abstract][Full Text] [Related]
22. Motor variability during a repetitive lifting task is impaired by wearing a passive back-support exoskeleton. Rimmele P; Steinhilber B; Rieger MA; Luger T J Electromyogr Kinesiol; 2023 Feb; 68():102739. PubMed ID: 36566692 [TBL] [Abstract][Full Text] [Related]
23. Potential exoskeleton uses for reducing low back muscular activity during farm tasks. Thamsuwan O; Milosavljevic S; Srinivasan D; Trask C Am J Ind Med; 2020 Nov; 63(11):1017-1028. PubMed ID: 32926450 [TBL] [Abstract][Full Text] [Related]
24. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling. Di Natali C; Chini G; Toxiri S; Monica L; Anastasi S; Draicchio F; Caldwell DG; Ortiz J Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33799947 [TBL] [Abstract][Full Text] [Related]
25. Flexible sensor-based biomechanical evaluation of low-back exoskeleton use in lifting. Yin W; Chen Y; Reddy C; Zheng L; Mehta RK; Zhang X Ergonomics; 2024 Feb; 67(2):182-193. PubMed ID: 37204270 [TBL] [Abstract][Full Text] [Related]
26. Use of a passive lumbar back exoskeleton during a repetitive lifting task: effects on physiologic parameters and intersubject variability. Erezuma UL; Espin A; Torres-Unda J; Esain I; Irazusta J; Rodriguez-Larrad A Int J Occup Saf Ergon; 2022 Dec; 28(4):2377-2384. PubMed ID: 34608854 [No Abstract] [Full Text] [Related]
27. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters. Schwartz M; Desbrosses K; Theurel J; Mornieux G Eur J Appl Physiol; 2022 Dec; 122(12):2575-2583. PubMed ID: 36074202 [TBL] [Abstract][Full Text] [Related]
28. Estimation of lower back muscle force in a lifting task using wearable IMUs. Shakourisalim M; Martinez KB; Golabchi A; Tavakoli M; Rouhani H J Biomech; 2024 Apr; 167():112077. PubMed ID: 38599020 [TBL] [Abstract][Full Text] [Related]
29. Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton. Di Natali C; Buratti G; Dellera L; Caldwell D Appl Ergon; 2024 Jul; 118():104278. PubMed ID: 38626669 [TBL] [Abstract][Full Text] [Related]
30. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. Alemi MM; Geissinger J; Simon AA; Chang SE; Asbeck AT J Electromyogr Kinesiol; 2019 Aug; 47():25-34. PubMed ID: 31108346 [TBL] [Abstract][Full Text] [Related]
31. Selecting the appropriate input variables in a regression approach to estimate actively generated muscle moments around L5/S1 for exoskeleton control. Tabasi A; Kingma I; de Looze MP; van Dijk W; Koopman AS; van Dieën JH J Biomech; 2020 Mar; 102():109650. PubMed ID: 32005548 [TBL] [Abstract][Full Text] [Related]
32. Kinematic effects of a passive lift assistive exoskeleton. Simon AA; Alemi MM; Asbeck AT J Biomech; 2021 May; 120():110317. PubMed ID: 33773297 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of a passive low-back support exoskeleton (Ergo-Vest) for manual waste collection. Ziaei M; Choobineh A; Ghaem H; Abdoli-Eramaki M Ergonomics; 2021 Oct; 64(10):1255-1270. PubMed ID: 33866962 [TBL] [Abstract][Full Text] [Related]
34. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study. Schrøder Jakobsen L; de Zee M; Samani A; Desbrosses K; Madeleine P Appl Ergon; 2023 Nov; 113():104104. PubMed ID: 37531933 [TBL] [Abstract][Full Text] [Related]
35. Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. von Glinski A; Yilmaz E; Mrotzek S; Marek E; Jettkant B; Brinkemper A; Fisahn C; Schildhauer TA; Geßmann J J Clin Neurosci; 2019 May; 63():249-255. PubMed ID: 30773477 [TBL] [Abstract][Full Text] [Related]
36. Short-Term Effects of a Passive Spinal Exoskeleton on Functional Performance, Discomfort and User Satisfaction in Patients with Low Back Pain. Kozinc Ž; Baltrusch S; Houdijk H; Šarabon N J Occup Rehabil; 2021 Mar; 31(1):142-152. PubMed ID: 32356222 [TBL] [Abstract][Full Text] [Related]
37. Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models. Moya-Esteban A; van der Kooij H; Sartori M J Biomech; 2022 Nov; 144():111307. PubMed ID: 36191432 [TBL] [Abstract][Full Text] [Related]
38. A Lower-Back Exoskeleton With a Four-Bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force. Moon C; Bae J; Kwak J; Hong D IEEE Trans Neural Syst Rehabil Eng; 2022; 30():729-737. PubMed ID: 35286262 [TBL] [Abstract][Full Text] [Related]
39. Optimizing Calibration Procedure to Train a Regression-Based Prediction Model of Actively Generated Lumbar Muscle Moments for Exoskeleton Control. Tabasi A; Lazzaroni M; Brouwer NP; Kingma I; van Dijk W; de Looze MP; Toxiri S; Ortiz J; van Dieën JH Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009627 [TBL] [Abstract][Full Text] [Related]
40. A dynamic 3D biomechanical evaluation of the load on the low back during different patient-handling tasks. Skotte JH; Essendrop M; Hansen AF; Schibye B J Biomech; 2002 Oct; 35(10):1357-66. PubMed ID: 12231281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]