These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34763863)

  • 1. Regulation of the Development in Physcomitrium (Physcomitrella) patens implicates the functional differentiation of plant RNase H1s.
    Chen S; Dong X; Yang Z; Hou X; Liu L
    Plant Sci; 2021 Dec; 313():111070. PubMed ID: 34763863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Heat Stress in
    Yang Z; Duan L; Li H; Tang T; Chen L; Hu K; Yang H; Liu L
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots.
    Fujita T; Sakaguchi H; Hiwatashi Y; Wagstaff SJ; Ito M; Deguchi H; Sato T; Hasebe M
    Evol Dev; 2008; 10(2):176-86. PubMed ID: 18315811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes.
    Hata Y; Kyozuka J
    Plant Mol Biol; 2021 Nov; 107(4-5):213-225. PubMed ID: 33609252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RSL genes are sufficient for rhizoid system development in early diverging land plants.
    Jang G; Yi K; Pires ND; Menand B; Dolan L
    Development; 2011 Jun; 138(11):2273-81. PubMed ID: 21558375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of nuclear auxin signalling.
    Paponov IA; Teale W; Lang D; Paponov M; Reski R; Rensing SA; Palme K
    BMC Evol Biol; 2009 Jun; 9():126. PubMed ID: 19493348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MOSS Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain.
    Landberg K; Pederson ER; Viaene T; Bozorg B; Friml J; Jönsson H; Thelander M; Sundberg E
    Plant Physiol; 2013 Jul; 162(3):1406-19. PubMed ID: 23669745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants.
    Thelander M; Landberg K; Muller A; Cloarec G; Cunniffe N; Huguet S; Soubigou-Taconnat L; Brunaud V; Coudert Y
    Curr Biol; 2022 Sep; 32(17):3838-3846.e5. PubMed ID: 35841890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens.
    Jang G; Dolan L
    New Phytol; 2011 Oct; 192(2):319-27. PubMed ID: 21707622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens.
    Cammarata J; Roeder AHK; Scanlon MJ
    J Exp Bot; 2023 Nov; 74(21):6541-6550. PubMed ID: 37498739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens.
    Bierfreund NM; Reski R; Decker EL
    Plant Cell Rep; 2003 Aug; 21(12):1143-52. PubMed ID: 12789498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss
    Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis.
    Ludwig-Müller J; Jülke S; Bierfreund NM; Decker EL; Reski R
    New Phytol; 2009 Jan; 181(2):323-338. PubMed ID: 19032442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin-mediated developmental control in the moss Physcomitrella patens.
    Thelander M; Landberg K; Sundberg E
    J Exp Bot; 2018 Jan; 69(2):277-290. PubMed ID: 28992074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss.
    Nemec-Venza Z; Madden C; Stewart A; Liu W; Novák O; Pěnčík A; Cuming AC; Kamisugi Y; Harrison CJ
    New Phytol; 2022 Apr; 234(1):149-163. PubMed ID: 35032334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms.
    Jaeger R; Moody LA
    Evol Dev; 2021 May; 23(3):123-136. PubMed ID: 33822471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physcomitrella patens auxin conjugate synthetase (GH3) double knockout mutants are more resistant to Pythium infection than wild type.
    Mittag J; Šola I; Rusak G; Ludwig-Müller J
    J Plant Physiol; 2015 Jul; 183():75-83. PubMed ID: 26102574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens.
    Wang Y; Jiang L; Kong D; Meng J; Song M; Cui W; Song Y; Wang X; Liu J; Wang R; He Y; Chang C; Ju C
    New Phytol; 2024 Jun; 242(5):1996-2010. PubMed ID: 38571393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell RNA sequencing reveals dynamics of gene expression for 2D elongation and 3D growth in Physcomitrium patens.
    Chen Z; Wang W; Zhou S; Ding L; Xu Z; Sun X; Huo H; Liu L
    Cell Rep; 2024 Aug; 43(8):114524. PubMed ID: 39046878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway.
    Prigge MJ; Lavy M; Ashton NW; Estelle M
    Curr Biol; 2010 Nov; 20(21):1907-12. PubMed ID: 20951049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.