BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 34764209)

  • 1. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation.
    Kats I; Reinbold C; Kschonsak M; Khmelinskii A; Armbruster L; Ruppert T; Knop M
    Life Sci Alliance; 2022 Feb; 5(2):. PubMed ID: 34764209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase.
    Kong KE; Fischer B; Meurer M; Kats I; Li Z; Rühle F; Barry JD; Kirrmaier D; Chevyreva V; San Luis BJ; Costanzo M; Huber W; Andrews BJ; Boone C; Knop M; Khmelinskii A
    Mol Cell; 2021 Jun; 81(11):2460-2476.e11. PubMed ID: 33974913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System.
    Guharoy M; Bhowmick P; Tompa P
    J Biol Chem; 2016 Mar; 291(13):6723-31. PubMed ID: 26851277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains.
    Ohtake F; Tsuchiya H; Saeki Y; Tanaka K
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1401-E1408. PubMed ID: 29378950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotranslational N-degron masking by acetylation promotes proteome stability in plants.
    Linster E; Forero Ruiz FL; Miklankova P; Ruppert T; Mueller J; Armbruster L; Gong X; Serino G; Mann M; Hell R; Wirtz M
    Nat Commun; 2022 Feb; 13(1):810. PubMed ID: 35145090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates.
    Van Damme P
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-end rule pathway enzyme Naa10 supports epiblast specification in mouse embryonic stem cells by modulating FGF/MAPK.
    Takekoshi D; Tokuzawa Y; Sakanaka M; Kato H
    In Vitro Cell Dev Biol Anim; 2019 May; 55(5):355-367. PubMed ID: 30993557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway.
    Oh JH; Hyun JY; Varshavsky A
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4370-E4379. PubMed ID: 28515311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HYPK promotes the activity of the
    Miklánková P; Linster E; Boyer JB; Weidenhausen J; Mueller J; Armbruster L; Lapouge K; De La Torre C; Bienvenut W; Sticht C; Mann M; Meinnel T; Sinning I; Giglione C; Hell R; Wirtz M
    Sci Adv; 2022 Jun; 8(24):eabn6153. PubMed ID: 35704578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner.
    Suryaraja R; Anitha M; Anbarasu K; Kumari G; Mahalingam S
    Cell Death Dis; 2013 Mar; 4(3):e565. PubMed ID: 23538446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and specific recognition of k29- and k33-linked polyubiquitin.
    Michel MA; Elliott PR; Swatek KN; Simicek M; Pruneda JN; Wagstaff JL; Freund SM; Komander D
    Mol Cell; 2015 Apr; 58(1):95-109. PubMed ID: 25752577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of the stress-responsive enzyme formate dehydrogenase by the RING-type E3 ligase Keep on Going and the ubiquitin 26S proteasome system.
    McNeilly D; Schofield A; Stone SL
    Plant Mol Biol; 2018 Feb; 96(3):265-278. PubMed ID: 29270890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Mechanism of Acetylation by the N-Terminal Dual Enzyme NatA/Naa50 Complex.
    Deng S; Magin RS; Wei X; Pan B; Petersson EJ; Marmorstein R
    Structure; 2019 Jul; 27(7):1057-1070.e4. PubMed ID: 31155310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HECT ubiquitin ligases as accessory proteins of the plant proteasome.
    Wang Z; Spoel SH
    Essays Biochem; 2022 Aug; 66(2):135-145. PubMed ID: 35635104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases.
    Hagenbucher J; Stekman H; Rodriguez-Gil A; Kracht M; Schmitz ML
    Methods Mol Biol; 2017; 1510():297-312. PubMed ID: 27761830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase.
    Wang L; Mao X; Ju D; Xie Y
    J Biol Chem; 2004 Dec; 279(53):55218-23. PubMed ID: 15504724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin.
    Kristariyanto YA; Abdul Rehman SA; Campbell DG; Morrice NA; Johnson C; Toth R; Kulathu Y
    Mol Cell; 2015 Apr; 58(1):83-94. PubMed ID: 25752573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation modulates the Fanconi anemia pathway by protecting FAAP20 from ubiquitin-mediated proteasomal degradation.
    Nagareddy B; Khan A; Kim H
    J Biol Chem; 2020 Oct; 295(40):13887-13901. PubMed ID: 32763975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cIAP1-based degraders induce degradation via branched ubiquitin architectures.
    Akizuki Y; Morita M; Mori Y; Kaiho-Soma A; Dixit S; Endo A; Shimogawa M; Hayashi G; Naito M; Okamoto A; Tanaka K; Saeki Y; Ohtake F
    Nat Chem Biol; 2023 Mar; 19(3):311-322. PubMed ID: 36316570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage.
    Kang HC; Lee YI; Shin JH; Andrabi SA; Chi Z; Gagné JP; Lee Y; Ko HS; Lee BD; Poirier GG; Dawson VL; Dawson TM
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14103-8. PubMed ID: 21825151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.