These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34764225)

  • 21. Towards autonomous analysis of chemical exchange saturation transfer experiments using deep neural networks.
    Karunanithy G; Yuwen T; Kay LE; Hansen DF
    J Biomol NMR; 2022 Jun; 76(3):75-86. PubMed ID: 35622310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers.
    Sekhar A; Kay LE
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12867-74. PubMed ID: 23868852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR Analysis of Protein Folding Interaction Networks.
    de Alba E
    Methods Mol Biol; 2022; 2376():173-185. PubMed ID: 34845610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein folding by NMR.
    Zhuravleva A; Korzhnev DM
    Prog Nucl Magn Reson Spectrosc; 2017 May; 100():52-77. PubMed ID: 28552172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Population shuffling between ground and high energy excited states.
    Sabo TM; Trent JO; Lee D
    Protein Sci; 2015 Nov; 24(11):1714-9. PubMed ID: 26316263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transient and low-populated protein-folding intermediate at atomic resolution.
    Korzhnev DM; Religa TL; Banachewicz W; Fersht AR; Kay LE
    Science; 2010 Sep; 329(5997):1312-6. PubMed ID: 20829478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing slow timescale dynamics in proteins using methyl
    Yuwen T; Huang R; Kay LE
    J Biomol NMR; 2017 Jul; 68(3):215-224. PubMed ID: 28647789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.
    Sekhar A; Vallurupalli P; Kay LE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19268-73. PubMed ID: 23129654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring hydrogen exchange rates in invisible protein excited states.
    Long D; Bouvignies G; Kay LE
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8820-5. PubMed ID: 24889628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydration and packing along the folding pathway of SH3 domains by pressure-dependent NMR.
    Bezsonova I; Korzhnev DM; Prosser RS; Forman-Kay JD; Kay LE
    Biochemistry; 2006 Apr; 45(15):4711-9. PubMed ID: 16605239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing frequency sampling in CEST experiments.
    Bolik-Coulon N; Hansen DF; Kay LE
    J Biomol NMR; 2022 Dec; 76(5-6):167-183. PubMed ID: 36192571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation.
    Jemth P; Gianni S; Day R; Li B; Johnson CM; Daggett V; Fersht AR
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6450-5. PubMed ID: 15096617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
    Guijarro JI; Morton CJ; Plaxco KW; Campbell ID; Dobson CM
    J Mol Biol; 1998 Feb; 276(3):657-67. PubMed ID: 9551103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
    Roche J; Dellarole M; Royer CA; Roumestand C
    Subcell Biochem; 2015; 72():261-78. PubMed ID: 26174386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring methods to expedite the recording of CEST datasets using selective pulse excitation.
    Yuwen T; Bouvignies G; Kay LE
    J Magn Reson; 2018 Jul; 292():1-7. PubMed ID: 29753980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abp1p and Fyn SH3 domains fold through similar low-populated intermediate states.
    Korzhnev DM; Neudecker P; Zarrine-Afsar A; Davidson AR; Kay LE
    Biochemistry; 2006 Aug; 45(34):10175-83. PubMed ID: 16922492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.
    Gu Y; Hansen AL; Peng Y; Brüschweiler R
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3117-9. PubMed ID: 26821600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins.
    Vugmeyster L
    Solid State Nucl Magn Reson; 2021 Feb; 111():101710. PubMed ID: 33450712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the free energy landscape of the fast-folding gpW protein by relaxation dispersion NMR.
    Sanchez-Medina C; Sekhar A; Vallurupalli P; Cerminara M; Muñoz V; Kay LE
    J Am Chem Soc; 2014 May; 136(20):7444-51. PubMed ID: 24805164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unveiling invisible protein states with NMR spectroscopy.
    Alderson TR; Kay LE
    Curr Opin Struct Biol; 2020 Feb; 60():39-49. PubMed ID: 31835059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.