These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34764290)

  • 1. Coexisting multi-states in catalytic hydrogen oxidation on rhodium.
    Winkler P; Zeininger J; Raab M; Suchorski Y; Steiger-Thirsfeld A; Stöger-Pollach M; Amati M; Gregoratti L; Grönbeck H; Rupprechter G
    Nat Commun; 2021 Nov; 12(1):6517. PubMed ID: 34764290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Structure Libraries: Multifrequential Oscillations in Catalytic Hydrogen Oxidation on Rhodium.
    Suchorski Y; Datler M; Bespalov I; Zeininger J; Stöger-Pollach M; Bernardi J; Grönbeck H; Rupprechter G
    J Phys Chem C Nanomater Interfaces; 2019 Feb; 123(7):4217-4227. PubMed ID: 31057690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing catalyst heterogeneity by a  multifrequential oscillating reaction.
    Suchorski Y; Datler M; Bespalov I; Zeininger J; Stöger-Pollach M; Bernardi J; Grönbeck H; Rupprechter G
    Nat Commun; 2018 Feb; 9(1):600. PubMed ID: 29426883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen Oxidation on Stepped Rh Surfaces: µm-Scale versus Nanoscale.
    Datler M; Bespalov I; Buhr S; Zeininger J; Stöger-Pollach M; Bernardi J; Rupprechter G; Suchorski Y
    Catal Letters; 2016; 146(10):1867-1874. PubMed ID: 32355436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Interface and Particle Size Effects by In Situ Correlative Microscopy of a Catalytic Reaction.
    Winkler P; Raab M; Zeininger J; Rois LM; Suchorski Y; Stöger-Pollach M; Amati M; Parmar R; Gregoratti L; Rupprechter G
    ACS Catal; 2023 Jun; 13(11):7650-7660. PubMed ID: 37288091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction Modes on a Single Catalytic Particle: Nanoscale Imaging and Micro-Kinetic Modeling.
    Zeininger J; Raab M; Suchorski Y; Buhr S; Stöger-Pollach M; Bernardi J; Rupprechter G
    ACS Catal; 2022 Oct; 12(20):12774-12785. PubMed ID: 36313520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern Formation in Catalytic H
    Zeininger J; Winkler P; Raab M; Suchorski Y; Prieto MJ; Tănase LC; de Souza Caldas L; Tiwari A; Schmidt T; Stöger-Pollach M; Steiger-Thirsfeld A; Roldan Cuenya B; Rupprechter G
    ACS Catal; 2022 Oct; 12(19):11974-11983. PubMed ID: 36249872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the anisotropy of surface oxide formation influences the transient activity of a surface reaction.
    Winkler P; Zeininger J; Suchorski Y; Stöger-Pollach M; Zeller P; Amati M; Gregoratti L; Rupprechter G
    Nat Commun; 2021 Jan; 12(1):69. PubMed ID: 33398022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local reaction kinetics by imaging.
    Suchorski Y; Rupprechter G
    Surf Sci; 2016 Jan; 643():52-58. PubMed ID: 26865736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Ultrathin Vanadium Oxide Layers on Rh(111) and Rh(110) Surfaces During Catalytic Reactions.
    von Boehn B; Imbihl R
    Front Chem; 2020; 8():707. PubMed ID: 32974277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale.
    Spiel C; Vogel D; Schlögl R; Rupprechter G; Suchorski Y
    Ultramicroscopy; 2015 Dec; 159 Pt 2():178-83. PubMed ID: 26021411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of alumina-supported Rh catalysts: effects of ceriation and zirconiation by using metal-organic precursors.
    Kroner AB; Newton MA; Tromp M; Russell AE; Dent AJ; Evans J
    Chemphyschem; 2013 Oct; 14(15):3606-17. PubMed ID: 23943563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Defects in the Local Reaction Kinetics of CO Oxidation on Low-Index Pd Surfaces.
    Vogel D; Spiel C; Schmid M; Stöger-Pollach M; Schlögl R; Suchorski Y; Rupprechter G
    J Phys Chem C Nanomater Interfaces; 2013 Jun; 117(23):12054-12060. PubMed ID: 23785524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon Oxide Surface Segregation in CO Oxidation on Pd: An in situ PEEM, MS and XPS Study.
    Vogel D; Budinska Z; Spiel C; Schlögl R; Suchorski Y; Rupprechter G
    Catal Letters; 2013 Mar; 143(3):235-240. PubMed ID: 23482699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study.
    Bespalov I; Datler M; Buhr S; Drachsel W; Rupprechter G; Suchorski Y
    Ultramicroscopy; 2015 Dec; 159 Pt 2():147-51. PubMed ID: 25766998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways.
    Blume R; Hävecker M; Zafeiratos S; Teschner D; Vass E; Schnörch P; Knop-Gericke A; Schlögl R; Lizzit S; Dudin P; Barinov A; Kiskinova M
    Phys Chem Chem Phys; 2007 Jul; 9(27):3648-57. PubMed ID: 17612729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active surfaces for CO oxidation on palladium in the hyperactive state.
    Chen M; Wang XV; Zhang L; Tang Z; Wan H
    Langmuir; 2010 Dec; 26(23):18113-8. PubMed ID: 21053982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Particle Catalysis: Revealing Intraparticle Pacemakers in Catalytic H
    Zeininger J; Suchorski Y; Raab M; Buhr S; Grönbeck H; Rupprechter G
    ACS Catal; 2021 Aug; 11(15):10020-10027. PubMed ID: 34386273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature.
    Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F
    J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.