These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34764415)

  • 1. Hydrometallurgical process development to recycle valuable metals from spent SCR deNO
    Jeon JH; Cueva Sola AB; Lee JY; Jyothi RK
    Sci Rep; 2021 Nov; 11(1):22131. PubMed ID: 34764415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching.
    Wang J; Wang S; Olayiwola A; Yang N; Liu B; Weigand JJ; Wenzel M; Du H
    J Hazard Mater; 2021 Aug; 416():125849. PubMed ID: 33894437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of tungsten and titanium from spent SCR catalyst by sulfuric acid leaching process.
    Zhao C; Wang C; Wang X; Li H; Chen Y; Wu W
    Waste Manag; 2023 Jan; 155():338-347. PubMed ID: 36417815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using Aliquat 336.
    Cueva Sola AB; Parhi PK; Lee JY; Kang HN; Jyothi RK
    RSC Adv; 2020 May; 10(34):19736-19746. PubMed ID: 35520398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route.
    Trinh HB; Lee JC; Srivastava RR; Kim S
    J Hazard Mater; 2019 Nov; 379():120772. PubMed ID: 31254787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of W, V, and As from spent SCR catalyst by alkali pressure leaching and the pressure leaching mechanism.
    Liu J; Wang C; Hou X; Li H; Wang X; Hu W; Ge T; Zhang J; Zhu G; Xie H
    J Environ Manage; 2023 Dec; 347():119107. PubMed ID: 37801947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkali fusion using sodium carbonate for extraction of vanadium and tungsten for the preparation of synthetic sodium titanate from spent SCR catalyst.
    Choi IH; Moon G; Lee JY; Jyothi RK
    Sci Rep; 2019 Aug; 9(1):12316. PubMed ID: 31444396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency recycling of Mo and Ni from spent HDS catalysts: Enhanced oxidation with O
    Yu H; Liu C; Liu S; Gu Y; Wang S; Yaraş A; Hu L; Zhang W; Peng M; Arslanoğlu H; Mao L
    J Hazard Mater; 2024 Feb; 464():132982. PubMed ID: 37984138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of vanadium, tungsten and molybdenum from spent SCR catalysts solution by solvent extraction with primary amine N1923.
    Xiao H; Chen L; Qin Z; Yin R; Weng D; Wang Z; Luo D
    Waste Manag; 2022 Aug; 150():301-309. PubMed ID: 35878529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of tungsten and cobalt from cemented tungsten carbide wastes using carbonate roasting and water leaching.
    Byun SY; Park JS; Kang JH; Seo S; Tran T; Kim MJ
    J Air Waste Manag Assoc; 2021 Jun; 71(6):711-720. PubMed ID: 33443460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery.
    Yang Y; Xu S; Li Z; Wang J; Zhao Z; Xu Z
    J Hazard Mater; 2016 Nov; 318():723-731. PubMed ID: 27484947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide.
    Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X
    J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH-NaNO
    Teng A; Xue X
    J Hazard Mater; 2019 Nov; 379():120805. PubMed ID: 31238217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst.
    Pathak A; Rana MS; Al-Sheeha H; Navvmani R; Al-Enezi HM; Al-Sairafi S; Mishra J
    Environ Sci Pollut Res Int; 2022 May; 29(23):34288-34301. PubMed ID: 35038087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategy and Technical Progress of Recycling of Spent Vanadium-Titanium-Based Selective Catalytic Reduction Catalysts.
    Zhao J; Zhang X; Yang F; Ai Y; Chen Y; Pan D
    ACS Omega; 2024 Feb; 9(6):6036-6058. PubMed ID: 38371753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Recovery of Vanadium and Titanium from Domestic Titanomagnetite Concentrate Using Molten Salt Roasting and Water Leaching.
    Trinh HB; Kim S; Lee J; Oh S
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of Spent FCC Catalysts: Conversion of Leached Residues to Zeolite ZSM-5.
    Timoshev V; Haufe LA; Busse O; Hamedi H; Seifert M; Weigand JJ
    ChemSusChem; 2024 Jul; 17(14):e202301642. PubMed ID: 38462539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst.
    Dai Z; Wang L; Tang H; Sun Z; Liu W; Sun Y; Su S; Hu S; Wang Y; Xu K; Liu L; Ling P; Xiang J
    Chemosphere; 2018 Sep; 207():440-448. PubMed ID: 29807343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.