BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1016 related articles for article (PubMed ID: 34764459)

  • 81. Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1).
    Dwivedi Y; Rizavi HS; Zhang H; Roberts RC; Conley RR; Pandey GN
    Int J Neuropsychopharmacol; 2009 Nov; 12(10):1337-54. PubMed ID: 19835659
    [TBL] [Abstract][Full Text] [Related]  

  • 82. MEK1 and MEK2 isoforms regulate distinct functions in pancreatic cancer cells.
    Zhou L; Tan X; Kamohara H; Wang W; Wang B; Liu J; Egami H; Baba H; Dai X
    Oncol Rep; 2010 Jul; 24(1):251-5. PubMed ID: 20514469
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Atractylodin inhibited the migration and induced autophagy in cholangiocarcinoma cells via PI3K/AKT/mTOR and p38MAPK signalling pathways.
    Acharya B; Chaijaroenkul W; Na-Bangchang K
    J Pharm Pharmacol; 2021 Aug; 73(9):1191-1200. PubMed ID: 33885818
    [TBL] [Abstract][Full Text] [Related]  

  • 84. AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy.
    Tamargo-Gómez I; Mariño G
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30501132
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Copper or/and arsenic induces autophagy by oxidative stress-related PI3K/AKT/mTOR pathways and cascaded mitochondrial fission in chicken skeletal muscle.
    Wang Y; Zhao H; Shao Y; Liu J; Li J; Luo L; Xing M
    J Inorg Biochem; 2018 Nov; 188():1-8. PubMed ID: 30096535
    [TBL] [Abstract][Full Text] [Related]  

  • 86. MAPK15 is part of the ULK complex and controls its activity to regulate early phases of the autophagic process.
    Colecchia D; Dapporto F; Tronnolone S; Salvini L; Chiariello M
    J Biol Chem; 2018 Oct; 293(41):15962-15976. PubMed ID: 30131341
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The many faces of the copper metabolism protein MURR1/COMMD1.
    de Bie P; van de Sluis B; Klomp L; Wijmenga C
    J Hered; 2005; 96(7):803-11. PubMed ID: 16267171
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Early signalling events of autophagy.
    Gallagher LE; Chan EY
    Essays Biochem; 2013; 55():1-15. PubMed ID: 24070467
    [TBL] [Abstract][Full Text] [Related]  

  • 89. NEDD4L downregulates autophagy and cell growth by modulating ULK1 and a glutamine transporter.
    Lee DE; Yoo JE; Kim J; Kim S; Kim S; Lee H; Cheong H
    Cell Death Dis; 2020 Jan; 11(1):38. PubMed ID: 31959741
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Quercetin Attenuates Copper-Induced Apoptotic Cell Death and Endoplasmic Reticulum Stress in SH-SY5Y Cells by Autophagic Modulation.
    Chakraborty J; Pakrashi S; Sarbajna A; Dutta M; Bandyopadhyay J
    Biol Trace Elem Res; 2022 Dec; 200(12):5022-5041. PubMed ID: 35149956
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cancer Pro-oxidant Therapy Through Copper Redox Cycling:
    Rieber M
    Curr Pharm Des; 2020; 26(35):4461-4466. PubMed ID: 32600223
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Deciphering the ionic homeostasis, oxidative stress, apoptosis, and autophagy in chicken intestine under copper(II) stress.
    Zhao H; Wang Y; Shao Y; Liu J; Liu Y; Xing M
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33172-33182. PubMed ID: 30255264
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Redox regulation of tyrosine kinase signalling: more than meets the eye.
    Dustin CM; Heppner DE; Lin MJ; van der Vliet A
    J Biochem; 2020 Feb; 167(2):151-163. PubMed ID: 31599960
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Copper induces cell death by targeting lipoylated TCA cycle proteins.
    Tsvetkov P; Coy S; Petrova B; Dreishpoon M; Verma A; Abdusamad M; Rossen J; Joesch-Cohen L; Humeidi R; Spangler RD; Eaton JK; Frenkel E; Kocak M; Corsello SM; Lutsenko S; Kanarek N; Santagata S; Golub TR
    Science; 2022 Mar; 375(6586):1254-1261. PubMed ID: 35298263
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Cuproptosis: a copper-triggered modality of mitochondrial cell death.
    Tang D; Chen X; Kroemer G
    Cell Res; 2022 May; 32(5):417-418. PubMed ID: 35354936
    [No Abstract]   [Full Text] [Related]  

  • 96. Copper homeostasis and cuproptosis in health and disease.
    Chen L; Min J; Wang F
    Signal Transduct Target Ther; 2022 Nov; 7(1):378. PubMed ID: 36414625
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Cuproptosis: mechanisms and links with cancers.
    Xie J; Yang Y; Gao Y; He J
    Mol Cancer; 2023 Mar; 22(1):46. PubMed ID: 36882769
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas.
    Bao JH; Lu WC; Duan H; Ye YQ; Li JB; Liao WT; Li YC; Sun YP
    Front Immunol; 2022; 13():933973. PubMed ID: 36045691
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A Novel Cuproptosis-Related Prognostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma.
    Bian Z; Fan R; Xie L
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627236
    [TBL] [